О СПОСОБНОСТИ НЕЛИНЕЙНОГО ОПРЕДЕЛЯЮЩЕГО СООТНОШЕНИЯ РАБОТНОВА ДЛЯ НАСЛЕДСТВЕННЫХ МАТЕРИАЛОВ МОДЕЛИРОВАТЬ ДИАГРАММЫ ДЕФОРМИРОВАНИЯ С ПАДАЮЩИМ УЧАСТКОМ
Аннотация
Исследуется физически нелинейное определяющее соотношение Ю.Н. Работнова с двумя произвольными материальными функциями для изотропных реономных материалов с целью определения комплекса моделируемых реологических эффектов, границ и индикаторов его области применимости. Выведено уравнение семейства диаграмм деформирования с постоянными скоростями, порождаемых этим соотношением в условиях одноосного квазистатического нагружения, аналитически изучены их общие качественные свойства, зависимости от скорости деформирования и характеристик материальных функций. Обнаруженные свойства сопоставлены с типичными свойствами диаграмм испытаний вязкоупругопластичных материалов и с общими свойствами диаграмм деформирования, порождаемых линейным интегральным соотношением вязкоупругости Больцмана - Вольтерры с произвольной функцией ползучести, которое соотношение Работнова обобщает в одноосном случае; указаны унаследованные свойства и свойства, приобретенные вследствие введения второй материальной функции. В частности, доказано, что соотношение Работнова моделирует только положительную скоростную чувствительность, а при стремлении скорости нагружения к нулю или бесконечности семейство диаграмм деформирования соотношения Работнова сходится к предельным кривым (мгновенного или равновесного деформирования). Получены достаточные условия монотонного возрастания диаграмм деформирования и наличия у них максимума. Показано, что определяющее соотношение Работнова может качественно описывать разупрочнение материала, то есть диаграммы деформирования с точкой максимума и ниспадающей ветвью, наблюдаемые в квазистатических испытаниях многих материалов. Способностью описывать деформационное разупрочнение соотношение Работнова кардинально отличается от линейного определяющего соотношения вязкоупругости Больцмана - Вольтерры, которое порождает только возрастающие и выпуклые вверх диаграммы деформирования.
Литература
2. Khokhlov A.V. Kachestvennyy analiz obshchikh svoystv teoreticheskikh krivykh lineynogo opredelyayushchego sootnosheniya vyazkouprugosti [The qualitative analysis of theoretic curves generated by linear viscoelasticity constitutive equation]. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication of BMSTU]. 2016. No 5. P. 187-245.DOI: 10.7463/0516.0840650. URL: http://technomagelpub.elpub.ru/jour/article/view/869 (In Russian).
3. Khokhlov A.V. Analiz obshchikh svoystv krivykh polzuchesti pri tsiklicheskikh stupenchatykh nagruzheniyakh, porozhdaemykh lineynoy teoriey nasledstvennosti [Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya Fiziko-matematicheskie nauki [Journal Samara State Tech. Univ. Ser. Phys. Math. Sci.]. 2017. Vol. 21. No 2. P. 326-361. DOI: 10.14498/vsgtu1533 (In Russian).
4. Khokhlov A.V. Dvustoronniye otsenki dlya funktsii relaksatsii lineynoy teorii nasledstvennosti cherez krivyye relaksatsii pri ramp-deformirovanii i metodiki yeye identifikatsii [Тwo-sided bounds for relaxation modulus in the linear viscoelasticity via relaxation curves at ramp strain histories and identification techniques]. Izvestiya Rossiyskoy Akademii Nauk. Mekhanika tverdogo tela [Mechanics of Solids]. 2018. No 3. P. 81-104. DOI: 10.7868/S0572329918030108 (In Russian).
5. Khokhlov A.V. Analiz svoystv krivykh polzuchesti s proizvol'noy nachal'noy stadiyey nagruzheniya, porozhdayemykh lineynoy teoriyey nasledstvennosti [Analysis of properties of creep curves generated by the linear viscoelasticity theory under arbitrary loading programs at initial stage]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya Fiziko-matematicheskie nauki [Journal Samara State Tech. Univ. Ser. Phys. Math. Sci.]. 2018. No 1. P. 65-95. DOI: 10.14498/vsgtu1543. (In Russian).
6. Khokhlov A.V. Krivyye polzuchesti i relaksatsii nelineynogo opredelyayushchego sootnosheniya Yu.N. Rabotnova dlya vyazkouprugoplastichnykh materialov [Creep and relaxation curves produced by the Rabotnov nonlinear constitutive relation for viscoelastoplastic materials]. Problemy prochnosti i plastichnosti [Problems of Strength and Plasticity]. 2016. Vol. 78. No 4. P. 452-466 (In Russian).
7. Khokhlov A.V. Analiz obshchikh svoystv krivykh polzuchesti pri stupenchatom nagruzhenii, porozhdaemykh nelineynym sootnosheniem Rabotnova dlya vyazkouprugoplastichnykh materialov [Analysis of general properties of creep curves generated by the Rabotnov nonlinear hereditary relation under multi-step loadings]. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences]. 2017. No 3. P. 93-123. DOI: 10.18698/1812-3368-2017-3-93-123 (In Russian).
8. Khokhlov A.V. Analysis of properties of ramp stress relaxation curves produced by the Rabotnov non-linear hereditary theory. Mechanics of Composite Materials. 2018. Vol. 54. No 4. P. 473-486. DOI: 10.1007/s11029-018-9757-1.
9. Khokhlov A.V. Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions. Moscow University Mechanics Bulletin. 2017. Vol. 72. No 5. P. 103-107.
10. Khokhlov A.V. Modelirovanie zavisimosti krivykh polzuchesti pri rastyazhenii i koeffitsienta Puassona reonomnykh materialov ot gidrostaticheskogo davleniya s pomoshch'yu nelineyno-nasledstvennogo sootnosheniya Rabotnova [Simulation of hydrostatic pressure influence on creep curves and Poisson's ratio of rheonomic materials under tension using the Rabotnov non-linear hereditary relation]. Mekhanika kompozitsionnykh materialov i konstruktsiy [Journal on Composite Mechanics and Design]. 2018. Vol. 24. No 3. P. 407-436 (In Russian).
11. Rabotnov Yu.N. Ravnovesiye uprugoy sredy s posledeystviyem [Equilibrium of elastic medium with heredity]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics]. 1948. Vol. 12. No 1. P. 53-62 (In Russian).
12. Namestnikov V.S., Rabotnov Yu.N. O nasledstvennykh teoriyakh polzuchesti [On the hereditary theories of creep]. Prikladnaya mekhanika i tekhnicheskaya fizika [Journal of Applied Mechanics and Technical Physics]. 1961. Vol. 2. No 4. P. 148-150 (In Russian).
13. Rabotnov Yu.N. Creep Problems in Structural Members. Amsterdam, London, North-Holland Publ. Co. 1969. 822 p.
14. Rabotnov Yu.N., Papernik L.K., Stepanychev E.I. Application of the nonlinear theory of heredity to the description of time effects in polymeric material. Polimer Mechanics. 1971. Vol. 7. No 1. P. 63-73.
15. Dergunov N.N., Papernik L.Kh., Rabotnov Yu.N. Analysis of behavior of graphite on the basis of nonlinear heredity theory. Journal of Applied Mechanics and Technical Physics. 1971. Vol. 12. No 2. P. 235-240. DOI: 10.1007/BF00850695.
16. Rabotnov Yu.N., Papernik L.Kh., Stepanychev E.I. Nelineynaya polzuchest' stekloplastika ТS8/3-250 [Non-linear creep of fibreglass reinforced plastic ТS 8/3-250]. Mekhanika polymerov [Polymer Mechanics]. 1971. No 3. P. 391-397 (In Russian).
17. Rabotnov Yu.N., Papernik L.Kh., Stepanychev E.I. O svyazi kharakteristik polzuchesti stekloplastikov s krivoi mgnovennogo deformirovaniya [On connection between fiberglass creep behavior and momentary deforming curve]. Mekhanika polimerov [Polymer Mechanics]. 1971. No 4. P. 624-628 (In Russian).
18. Rabotnov Yu.N., Suvorova Yu.V. О zakone deformirovaniya metallov pri odnoosnom nagruzhenii [On a law of metals deforming under uniaxial loading]. Izvestiya AN SSSR. Mekhanika tverdogo tela [Mechanics of Solids]. 1972. No 4. P. 41-54 (In Russian).
19. Rabotnov Yu.N., Papernik L.K., Stepanychev E.I. Description of creep of composition materials under tension and compression. Polymer Mechanics. 1973. Vol. 9. No 5. P. 690-695. https://doi.org/10.1007/BF00856259.
20. Rabotnov Yu.N. Elementy nasledstvennoi mekhaniki tverdykh tel [Fundamentals of Hereditary Solid Mechanics]. Moscow. Nauka Publ. 1977. 384 p. (In Russian).
21. Suvorova Yu.V. Nelineynye effekty pri deformirovanii nasledstvennykh sred [Nonlinear effects in case of deformation of hereditary medium]. Mekhanika polimerov [Polymer Mechanics]. 1977. No 6. P. 976-980 (In Russian).
22. Osokin A.E., Suvorova Yu.V. Nonlinear governing equation of a hereditary medium and methodology of determining its parameters. Journal of Applied Mathematics and Mechanics. 1978. Vol. 42. No 6. P. 1214-1222. DOI: 10.1016/0021-8928(78)90072-2.
23. Suvorova Yu.V., Alekseeva S.I. Nelineynaya model izotropnoy nasledstvennoy sredy dlya sluchaya slozhnogo napryazhennogo sostoyaniya [Nonlinear model of isotropic hereditary medium under combined stress]. Mekhanika kompozitnykh materialov [Mechanics of Composite Materials]. 1993. No 5. P. 602-607 (In Russian).
24. Suvorova Yu.V., Alekseeva S.I. Inzhenernye prilozheniya modeli nasledstvennogo tipa k opisaniyu povedeniya polimerov i kompozitov s polimernoy matritsey [Engineering application of hereditary model to description of the polymer and polymer matrix composite behavior]. Zavodskaya laboratoriya. Diagnostika materialov [Industrial Laboratory. Diagnostics of Materials]. 2000. Vol. 66. No. 5. P. 47-51 (In Russian).
25. Suvorova Y.V. O nelineyno-nasledstvennom uravnenii Y.N. Rabotnova i yego prilozheniyakh [Rabotnov's nonlinear hereditary-type equation and its applications]. Izvestiya RAN. Mekhanika tverdogo tela [Mechanics of Solids]. 2004. No 1. P. 174-181 (In Russian).
26. Alekseyeva S.I., Fronya M.A., Viktorova I.V. Analiz vyazkouprugikh svoystv polimernykh kompozitov s uglerodnymi nanonapolnitelyami [Analysis of the viscoelastic properties of polymer composites with carbon fillers]. Kompozity i nanostruktury [Composites and Nanostructures]. 2011. No 2. P. 28-39 (In Russian).
27. Fung Y.C. Stress-strain history relations of soft tissues in simple elongation. In: Biomechanics: Its Foundations and Objectives. Eds. Fung Y.C. et al. New Jersey. Prentice-Hall. 1972. Р. 181-208.
28. Fung Y.C. On mathematical models of stress-strain relationship for living soft tissues. Polymer Mechanics. 1975. Vol. 11. No 5. P. 726-740. https://doi.org/10.1007/BF00859649
29. Woo S. L.-Y. Mechanical properties of tendons and ligaments - I. Quasi-static and nonlinear viscoelastic properties. Biorheology. 1982. Vol. 19. P. 385-396.
30. Sauren A.A., Rousseau E.P. A concise sensitivity analysis of the quasi-linear viscoelastic model proposed by Fung. Journal of Biomechanical Engineering. 1983. Vol. 105. Р. 92-95.
31. Fung Y.C. Biomechanics. Mechanical Properties of Living Tissues. New-York. Springer-Verlag. 1993. 568 p.
32. Funk J.R., Hall G.W., Crandall J.R., Pilkey W.D. Linear and quasi-linear viscoelastic characterization of ankle ligaments. Journal of Biomechanics. 2000. Vol. 122. P. 15-22.
33. Sarver J.J., Robinson P.S., Elliott D.M. Methods for quasi-linear viscoelastic modeling of soft tissue: application to incremental stress-relaxation experiments. Journal of Biomechanical Engineering. 2003. Vol. 125. No 5. P. 754-758.
34. Abramowitch S.D., Woo S.L.-Y. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. Journal of Bio-mechanical Engineering. 2004. Vol. 126. P. 92-97.
35. Nekouzadeh A., Pryse K.M., Elson E.L., Genin G.M. A simplified approach to quasi-linear viscoelastic modeling. Journal of Biomechanics. 2007. Vol. 40. No 14. P. 3070-3078.
36. De Frate L.E., Li G. The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model. Biomechanics and Modeling in Mechanobiology. 2007. Vol. 6. No 4. P. 245-251.
37. Duenwald S.E., Vanderby R., Lakes R.S. Constitutive equations for ligament and other soft tissue: evaluation by experiment. Acta Mechanica. 2009. Vol. 205. P. 23-33.
38. Lakes R.S. Viscoelastic Materials. Cambridge. Cambridge Univ. Press. 2009. 461 p.
39. Duenwald S.E., Vanderby R., Lakes R.S. Stress relaxation and recovery in tendon and ligament: Experiment and modeling. Biorheology. 2010. Vol. 47. P. 1-14.
40. De Pascalis R., Abrahams I.D., Parnell W.J. On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model. Proceedings of the Royal Society. 2014. Vol. 470. P. 1-18. DOI: 10.1098/rspa.2014.0058.
41. Babaei B., Abramowitch S.D., Elson E.L., Thomopoulos S., Genin G.M. A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials. Journal of the Royal Society Interface. 2015. Vol. 12. No 113. P. 20150707. DOI: 10.1098/rsif.2015.0707.
42. Park S.W., Schapery R.A. A viscoelastic constitutive model for particulate composites with growing damage. International Journal of Solids and Structures. 1997. Vol. 34. No 8. Р. 931-947.
43. Vil'deman V.E., Sokolkin Yu.V., Tashkinov AA. Mekhanika neuprugogo deformirovaniya b razrusheniya kompozitsionnykh materialov [Mechanics of Inelastic Deformation and Fracture of Composite Materials]. Moscow. Nauka Publ. 1998. 288 p. (In Russian).
44. Jung G.-D., Youn S.-K. A nonlinear viscoelastic constitutive model of solid propellant. International Journal of Solids and Structures. 1999. Vol. 36. P. 3755-3777.
45. Krishtal М.М. Instability and mesoscopic inhomogeneity of plastic deformation (analytical review). Part I. Phenomenology of yield drop and jerky flow. Physical Mesomechanics. 2004. Vol. 7. No 5-6. P. 5-26.
46. Apet'yan V.E., Bykov D.L. Analiz nemonotonnoi zavisimosti napryazhenii ot deformatsii v vyazkouprugikh materialakh [Analysis of non-monotonic stress-strain relation in viscoelastic materials]. Izvestiya RAN. MTT [Mechanics of Solids]. 2004. No 4. P. 106-115 (In Russian).
47. Xu F., Aravas N., Sofronis P. Constitutive modeling of solid propellant materials with evolving microstructural damage. Journal of the Mechanics and Physics of Solids. 2008. Vol. 56. P. 2050-2073.
48. Segal V.M., Beyerlein I.J., Tome C.N., Chuvil'deev V.N., Kopylov V.I. Fundamentals and Engineering of Severe Plastic Deformation. New York. Nova Science Pub. Inc. 2010. 542 p.
49. Lin Y.C., Chen X.-M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Materials and Design. 2011. Vol. 32. P. 1733-1759.
50. Liu X., Jonas J.J., Li L.X., Zhu B.W. Flow softening, twinning and dynamic recrystallization in AZ31 magnesium. Materials Science and Engineering: A. 2013. Vol. 583. P. 242-253. DOI: 10.1016/j.msea.2013.06.074.
51. Wildemann V.E., Lomakin E.V., Tretyakov M.P. Postcritical deformation of steels in plane stress state. Mechanics of Solids. 2014. No 1. P. 18-26.
52. Yun K.-S., Park J.-B., Jung G.-D., Youn S.-K. Viscoelastic constitutive modelling of solid propellant with damage. International Journal of Solids and Structures. 2016. Vol. 34. Р. 118-127. DOI: 10.1016/j.ijsolstr.2015.10.028.
53. Xu C., Pan J.P., Nakata T., Qiao X.G., Chi Y.Q., Zheng M.Y., Kamado S. Hot compression deformation behavior of Mg-9Gd-2.9Y-1.9Zn-0.4Zr-0.2Ca (wt%) alloy. Materials Characterization. 2017. Vol. 124. No 2. P. 40-49.
54. Khokhlov A.V. Properties of stress-strain curves family generated by the Rabotnov non-linear relation for viscoelastic materials. Mechanics of Solids. 2018. No 6.
55. Shesterikov S.A., Yumasheva M.A. Konkretizatsiya uravneniya sostoyaniya pri polzuchesti [Specification of creep constitutive relation]. Izvestiya AN SSSR. Mekhanika tverdogo tela [Mechanics of Solids]. 1984. No 1. P. 86-91 (In Russian).