http://ppp.mech.unn.ru/index.php/ppp/issue/feedПроблемы прочности и пластичности2024-12-30T12:50:50+03:00Игумнов Леонид Александрович/Igumnov Leonid Aleksandrovichppp@mech.unn.ruOpen Journal Systems<p>Журнал публикует статьи, посвященные разработке и развитию современных математических моделей и методов решения широкого круга задач механики, теоретическим и экспериментальным исследованиям, вопросам компьютерного моделирования и численного анализа поведения машин, конструкций и сооружений при воздействиях различной физической природы, методологии оптимального проектирования с учетом различных критериев и ограничений.</p> <p> </p>http://ppp.mech.unn.ru/index.php/ppp/article/view/838ИССЛЕДОВАНИЕ НАНОТВЕРДОСТИ И МИКРОСТРУКТУРЫ БИМЕТАЛЛА «НЕЛЕГИРОВАННЫЙ ТИТАН – ТИТАНОВЫЙ СПЛАВ Ti6Al4V», ПОЛУЧЕННОГО МЕТОДОМ ПОСЛОЙНОГО ЛАЗЕРНОГО СПЛАВЛЕНИЯ2024-12-30T12:50:44+03:00Грязнов М.Ю. Gryaznovppp@mech.unn.ruШотин С.В. Shotinppp@mech.unn.ruСеменычева А.В. Semenychevappp@mech.unn.ruЧувильдеев В.Н. Chuvildeevppp@mech.unn.ruПискунов А.В. Piskunovppp@mech.unn.ru<p>Для обеспечения биоинертности и высоких физико-механических характеристик медицинских персонализированных изделий методом послойного лазерного сплавления созданы биметаллические образцы на основе титанового сплава Ti6Al4V и нелегированного титана. Методом растровой электронной микроскопии проведено исследование структуры области соединения материалов при использовании различных режимов сплавления. Показано, что в оптимальных режимах сплавления область соединения двух материалов не содержит дефектов. С использованием методов энергодисперсионного микроанализа растровой электронной микроскопии изучено распределение концентрации алюминия в биметалле вдоль линии ортогональной границы сплавления двух компонентов. Показано, что изменение концентрации Al в зависимости от расстояния до границы соединения двух материалов имеет двухстадийный характер: выделяются стадии медленного и быстрого изменения концентрации Al. Величина нанотвердости в переходной области уменьшается монотонно от средних значений 5,2 ГПа, характерных для сплава Ti6Al4V, до средних значений 3,8 ГПа, характерных для нелегированного титана. Показано, что ширина переходной зоны двух материалов существенно зависит от технологических параметров сплавления. Технология послойного лазерного сплавления позволяет создавать бездефектный биметаллический материал, характерной особенностью которого является наличие биоинертного внешнего слоя из нелегированного титана и высокопрочной внутренней части из титанового сплава Ti6Al4V. При этом конструкция биметаллических имплантатов должна иметь внешний слой из нелегированного титана толщиной не менее 700 мкм.</p>2024-12-30T11:18:58+03:00##submission.copyrightStatement##http://ppp.mech.unn.ru/index.php/ppp/article/view/839О ТОЧНОСТИ УСЕЧЕННЫХ РАЗЛОЖЕНИЙ ПОЛЕЙ У ВЕРШИНЫ ТРЕЩИНЫ В АНИЗОТРОПНЫХ МАТЕРИАЛАХ2024-12-30T12:50:45+03:00Степанова Л.В. Stepanovappp@mech.unn.ruФомченкова М.А. Fomchenkovappp@mech.unn.ru<p>Получены оценки точности усеченных асимптотических разложений, обобщающих представление М.Уильямса и широко используемых для представления механических полей вблизи вершин трещин в плоских анизотропных упругих средах. Рассмотрены усеченные на различном количестве слагаемых асимптотические решения в виде формальных бесконечных рядов, представляющие поля напряжений в окрестности вершины трещины в анизотропной среде. Даны количественные оценки влияния усечения на точность представления механических величин путем сравнения усеченных решений с точными аналитическими решениями в замкнутой форме, которые существуют для некоторых конфигураций тел с трещинами. Вычислены двумерные поля абсолютной погрешности с наличием областей, в которых появляются точки с численно нулевой погрешностью, что показывает существование зон, где усеченные ряды могут дать точные результаты. Эти точки точности сходятся на кривых, исходящих от вершины трещин и направленных к внешней стороне кругов сходимости рядов.</p> <p>Предложен и усовершенствован численный метод реконструкции коэффициентов рядов полей напряжений, деформаций и перемещений вблизи кончика дефекта в линейно упругих анизотропных (ортотропных) материалах. Предлагаемый и развиваемый существенно переопределенный метод базируется на конечно-элементных расчетах образцов с разрезами для анизотропных сред в условиях смешанного нагружения и извлечении полей напряжений из конечно-элементных решений. С помощью полученного конечно-элементного поля напряжений в узлах конечно-элементной сетки формируется существенно переопределенная система алгебраических уравнений относительно коэффициентов асимптотических разложений полей, ассоциированных с разрезом. Исследованы численные примеры трещин в конечных и бесконечных пластинах, где результаты предлагаемого подхода демонстрируют хорошее соответствие с точными или альтернативными численными решениями. Проведено исследование сходимости методики для проверки надежности методологии и достоверности результатов. Вычислена соответствующая ошибка при аппроксимации поля напряжений. Низкие значения погрешностей демонстрируют высокую точность развитого метода.</p>2024-12-30T11:27:34+03:00##submission.copyrightStatement##http://ppp.mech.unn.ru/index.php/ppp/article/view/840ПРОЦЕССЫ НЕСТАБИЛЬНОСТИ В ПЛАСТИЧЕСКИ ДЕФОРМИРУЕМЫХ СПЛАВАХ2024-12-30T12:50:46+03:00Сарафанов Г.Ф. Sarafanovppp@mech.unn.ru<p>На основе предложенной модели исследована пространственно-волновая динамика эффекта Портевена – Ле Шателье в кристаллических сплавах. Модель представляет собой систему интегро-дифференциальных уравнений для внешнего напряжения, скорости дислокаций, скорости пластической деформации, а также уравнения Гилмана – Джонстона, задающего режим деформации. Плотность дислокаций учитывается как монотонно возрастающий параметр, приводящий к упрочнению. В результате численного исследования модели установлено, что имеется ряд безразмерных параметров, которые существенно влияют на эффект скачкообразной деформации. Прежде всего, это параметры m, <em>u</em>0 и <em>A</em>. Параметр m, характеризующий эффективную массу дислокации, крайне мал, вследствие чего колебания нагрузки в системе имеют сугубо релаксационный характер; параметр <em>u</em>0, пропорциональный заданной скорости пластической деформации, определяет границы области неустойчивости; корреляционный параметр <em>A</em> наряду со значением величины <em>u</em>0 (в области неустойчивости) влияет на разнообразие пространственно-волновых решений. При малых значения параметра <em>A</em> меньше некоторого критического значения <em>А</em><em>с</em> в системе реализуется регулярный однородный режим, локализация деформации отсутствует. С увеличением <em>A</em> > <em>А</em><em>с</em> процесс пластической деформации становится нерегулярным. Рассмотрены два случая при <em>u</em>0 = 1 и <em>u</em>0 = 2. В обоих случаях деформирующее напряжение имеет выраженный характер скачкообразной деформации, а скорость пластической деформации – форму импульсов, которые образуют правильные полосы Портевена – Ле Шателье во времени и пространстве. Эти полосы симметрично берут свое начало на противоположных захватах и распространяются с определенной скоростью до противоположного конца (во втором случае с большей скоростью), после чего процесс повторяется. Показано, что суммарная скорость деформации <em>u</em>(<em>t</em>), интегрированная по всей длине кристалла и связанная со скоростью растяжения образца, сильно коррелирует со скачками нагрузки – каждому остроконечному всплеску <em>u</em>(<em>t</em>) соответствует падение внешнего напряжения на кривой деформации.</p>2024-12-30T11:34:44+03:00##submission.copyrightStatement##http://ppp.mech.unn.ru/index.php/ppp/article/view/841ВЛИЯНИЕ МОДЕЛИ ПОВЕДЕНИЯ ТОНКОГО АДГЕЗИОННОГО СЛОЯ В СОЕДИНЕНИИ ВНАХЛЕСТ НА ЗНАЧЕНИЕ J-ИНТЕГРАЛА2024-12-30T12:50:46+03:00Богачева В.Э. Bogachevappp@mech.unn.ruГлаголев В.В. Glagolevppp@mech.unn.ruГлаголев Л.В. Glagolevppp@mech.unn.ru<p>Получена характеристика типа <em>J</em>-интеграла в случае деформирования упругопластического адгезионного слоя, который связывает линейно упругие тела внахлест. Контур интегрирования рассматриваемого интеграла охватывает область предполагаемого необратимого деформирования. Считается, что решение задачи может приводить к наличию ненулевого вектора напряжений на свободной поверхности клеевого слоя с однородным по толщине слоя распределением полей напряжений и деформаций. В случае выполнения условий свободной поверхности на торцевой поверхности клеевого слоя значение <em>J</em>-интеграла определяет произведение толщины адгезионного слоя на сумму удельных упругой энергии и диссипации. Для соединения несущих тел клеевым слоем внахлест из связанной системы уравнений в рамках известных допущений для поля перемещений в несущих линейно упругих телах образца и условия текучести Губера – Мизеса для адгезионного слоя получена замкнутая постановка задачи. С учетом упругого и упругопластического поведения адгезионного слоя получены решения задачи для известных экспериментальных данных для критической внешней нагрузки. В упругопластическом решении найдены области необратимого деформирования. Показано существенное различие в поведении касательных напряжений в упругопластических зонах деформирования и совпадение диагональных компонент тензора напряжений в клеевом слое для рассмотренных моделей его поведения. В случае критической внешней нагрузки найдены значения <em>J</em>-интеграла для относительно малых значений толщин адгезионного слоя. Показано, что в рамках рассмотренных моделей поведения адгезионного слоя предельная величина <em>J</em>-интеграла имеет одно асимптотическое значение при стремлении толщины слоя к нулевому значению.</p>2024-12-30T11:42:51+03:00##submission.copyrightStatement##http://ppp.mech.unn.ru/index.php/ppp/article/view/842ОПРЕДЕЛЕНИЕ ВЕРХНЕЙ ГРАНИЦЫ НЕСУЩЕЙ СПОСОБНОСТИ ИЗГИБАЕМЫХ АРМИРОВАННЫХ МЕТАЛЛОКОМПОЗИТНЫХ КОЛЬЦЕВЫХ ПЛАСТИН, КОНТАКТИРУЮЩИХ С ЖИДКОЙ НЕСЖИМАЕМОЙ СРЕДОЙ. 2. АНАЛИЗ РЕЗУЛЬТАТОВ РАСЧЕТОВ2024-12-30T12:50:47+03:00Янковский А.П. Yankovskiippp@mech.unn.ru<p>Для однородных изотропных кольцевых пластин с жесткой вставкой, покоящихся на несжимаемом жидком основании, проведено сравнение решений, полученных аналитически П. Ходжем, и численным методом, разработанным ранее автором. На конкретных примерах продемонстрирована сходимость численного решения и его хорошее согласование с полным точным решением. При этом точность определения предельного значения поперечной нагрузки, приложенной к жесткой вставке, составляет 1-2%. Показано, что численное решение не является полным, так как позволяет рассчитать только предельное значение внешней активной нагрузки, приложенной к изгибаемой пластине, но не позволяет определить величину отпора жидкости в предельном состоянии конструкции. Проанализировано влияние параметров армирования пластин на предельную величину поперечной силы, приложенной к жесткой вставке. Исследованы варианты укладки арматуры по логарифмическим спиралям, по прямолинейным траекториям и по радиальным и/или окружным траекториям. Показано, что наибольшей несущей способностью обладают пластины с радиально-окружной структурой, когда в каждой ее точке суммарная плотность армирования равна максимально допустимому значению. Впервые рассмотрен нетрадиционный вариант граничных условий на внешней кромке пластины, работающей в указанных условиях, – свободный край. Продемонстрировано, что в случае конструктивного исполнения изделия, когда в предельном состоянии пластины невозможно перетекание жидкости с одной ее лицевой поверхности на другую, несущая способность пластины со свободным внешним краем в несколько раз меньше, чем пластины с опертой внешней кромкой. Показана возможность возникновения в предельном состоянии армированных пластин абсолютно жесткой кольцевой подобласти, примыкающей к внутренней вставке.</p>2024-12-30T11:51:21+03:00##submission.copyrightStatement##http://ppp.mech.unn.ru/index.php/ppp/article/view/843ДИНАМИЧЕСКИЕ КОНТАКТНЫЕ ЗАДАЧИ ДЛЯ ПОЛУПОЛОСОВОГО ШТАМПА НА АНИЗОТРОПНОМ КОМПОЗИТЕ2024-12-30T12:50:47+03:00Бабешко В.А. Babeshkoppp@mech.unn.ruЕвдокимова О.В. Evdokimovappp@mech.unn.ruБабешко О.М. Babeshkoppp@mech.unn.ruЕвдокимов В.С. Evdokimovppp@mech.unn.ruХрипков Д.А. Khripkovppp@mech.unn.ru<p>Впервые методом блочного элемента строится точное решение динамической контактной задачи о действии без трения жесткого штампа в форме полуполосы на анизотропное многослойное композитное основание. Предполагается, что штамп подвергается гармоническому во времени воздействию, вызывая волновой процесс вне зоны контакта. Таким образом, впервые точно решается двумерное интегральное уравнение Винера – Хопфа с разностным ядром в области, представляющей собой полуполосу. Известными численными методами удается описывать поведение концентрации контактных напряжений на границе штампа в случаях изотропных материалов. Однако построить точное решение о распределении контактных напряжений в анизотропном случае под полуполосовым штампом с учетом особенностей на границе не удавалось. Получено решение, позволяющее описывать динамические процессы и концентрации напряжений под полуполосовым штампом при гармонических воздействиях на анизотропное основание. В тех случаях, когда полуполоса вырождается в полосу или в четверть плоскости, решение упрощается и переходит в известные решения для этих областей.</p> <p>Для обеспечения корректной постановки задачи применяется принцип предельного поглощения Мандельштама. В процессе исследования используются метод блочного элемента, факторизационные методы, метод Ньютона – Канторовича.</p> <p>Построенное точное решение контактной задачи позволяет выделить функции, описывающие концентрацию контактных напряжений на границах штампа, в том числе в угловых точках полуполосового штампа. Показатели концентрации контактных напряжений в угловых зонах полуполосового штампа близки к значениям, полученным приближенными методами и опубликованным ранее.</p> <p>Найденное решение может быть полезно в инженерной практике, сейсмологии, а также в других областях.</p>2024-12-30T12:11:11+03:00##submission.copyrightStatement##http://ppp.mech.unn.ru/index.php/ppp/article/view/844УТОЧНЕННАЯ ТРАНСФОРМАЦИОННАЯ МОДЕЛЬ ДЕФОРМИРОВАНИЯ СТЕРЖНЯ-ПОЛОСЫ, ЗАКРЕПЛЕННОГО НА ДВУХСТОРОННЕМ ОПОРНОМ ЭЛЕМЕНТЕ ЧЕРЕЗ УПРУГИЕ ПРОСЛОЙКИ. 1. ОСНОВНЫЕ СООТНОШЕНИЯ И УРАВНЕНИЯ ДВИЖЕНИЯ2024-12-30T12:50:48+03:00Паймушин В.Н. Paimushinppp@mech.unn.ruШишкин В.М. Shishkinppp@mech.unn.ru<p>При исследовании процессов деформирования плоских стержней с учетом деформации закрепленных участков требуется введение понятия трансформации параметров напряженно-деформированного состояния и применяемых для их описания математических моделей. Такая трансформация имеет место при переходе через границу от незакрепленного участка к закрепленному (от закрепленного к незакрепленному). Построена уточненная трансформационная модель динамического деформирования стержня-полосы, состоящего по длине из закрепленного и незакрепленного участков. Закрепленный участок конечной длины считается соединенным по двум лицевым поверхностям с абсолютно жестким и неподвижным опорным элементом через упругие трансверсально-мягкие прослойки. Для представления перемещений закрепленного и незакрепленного участков стержня, а также упругих прослоек приняты аппроксимации по сдвиговой модели С.П. Тимошенко с учетом их поперечного обжатия, подчиненные условиям непрерывности перемещений в точках соединения прослоек с закрепленным участком стержня и неподвижности точек контакта прослоек с опорным элементом. На основе этой сдвиговой модели получены в геометрически линейном приближении компоненты деформированного состояния и в физически линейно-упругом приближении соответствующие компоненты напряжений, а также вариации потенциальной энергии деформации и работы инерционных сил для закрепленного и незакрепленного участков стержня. Сформулированы условия кинематического сопряжения отмеченных участков стержня. При учете этих условий, исходя из вариационного принципа Даламбера – Лагранжа, получены для введенных в рассмотрение участков соответствующие уравнения движения и граничные условия к ним, а также силовые условия сопряжения закрепленного и незакрепленного участков стержня.</p>2024-12-30T00:00:00+03:00##submission.copyrightStatement##http://ppp.mech.unn.ru/index.php/ppp/article/view/845ВЛИЯНИЕ ПОВЫШЕННЫХ ТЕМПЕРАТУР И ПРЕДВАРИТЕЛЬНЫХ УДАРНЫХ ВОЗДЕЙСТВИЙ НА ОСТАТОЧНУЮ МЕЖСЛОЕВУЮ ПРОЧНОСТЬ УГЛЕПЛАСТИКА2024-12-30T12:50:48+03:00Лобанов Д.С. Lobanovppp@mech.unn.ruСтрунгарь Е.М. Strungarppp@mech.unn.ruСтароверов О.А. Staroverovppp@mech.unn.ruЧеботарева Е.А. Chebotarevappp@mech.unn.ru<p>Проведены серии экспериментальных исследований для выявления влияния повышенных температур и предварительного ударного воздействия на остаточную межслоевую прочность конструкционного углепластика, изготовленного на основе препреговой технологии и автоклавного формования. Испытания на межслоевой сдвиг проводились при комнатной и повышенной температурах на образцах, вырезанных в виде короткой балки, которые были подвержены предварительным динамическим воздействиям с различной энергией удара (от 1 до 6 Дж). Получены диаграммы нагружений и поглощения энергии образцов в испытаниях на удар и сделаны выводы о разрушениях материала при динамических нагрузках. Построены диаграммы нагружения при влиянии повышенных температур и предварительного удара, на основе которых проведен анализ наиболее опасных факторов внешнего воздействия на конструкции. При испытаниях на межслоевой сдвиг проводилась регистрация полей напряжений и деформаций с использованием бесконтактной оптической видеосистемы и регистрация сигналов акустической эмиссии. На основании анализа данных, полученных с помощью метода корреляции цифровых изображений, удалось оценить механическое поведение испытуемых образцов в зависимости от ударного воздействия различной интенсивности и влияния повышенных температур. При анализе данных акустической эмиссии проведен параметрический анализ на основе кумулятивной энергии и пиковых частот сигналов, оценены механизмы разрушения материала при разной энергии предварительного удара. По результатам комплексных исследований конструкционного материала были качественно оценены процесс накопления повреждений, смена механизмов разрушения композита и влияние внешних факторов на несущую способность конструкций из исследуемого материала.</p>2024-12-30T12:26:38+03:00##submission.copyrightStatement##http://ppp.mech.unn.ru/index.php/ppp/article/view/846О СООТНОШЕНИИ СКОРОСТЕЙ СДВИГОВЫХ ВОЛН И ПОВЕРХНОСТНЫХ ВОЛН РЭЛЕЯ ДЛЯ МАТЕРИАЛОВ, ОПИСЫВАЕМЫХ УРАВНЕНИЯМИ МЕХАНИКИ ОБОБЩЕННЫХ КОНТИНУУМОВ2024-12-30T12:50:49+03:00Антонов А.М. Antonovppp@mech.unn.ru<p>Изучается вопрос о том, как две известные модели обобщенных континуумов описывают поверхностную волну Рэлея, распространяющуюся вдоль свободной от напряжений поверхности упругого полупространства. В качестве тестируемых выбраны модели градиентно-упругой среды и упрощенной (редуцированной) среды Коссера. Получены дисперсионные уравнения, анализ которых показал, что обе модели свидетельствуют о том, что дисперсионные свойства поверхностной волны Рэлея в плоскости волновое число – частота описываются двумя кривыми, нижняя из которых исходит из начала координат, начало второй смещено вверх по оси частот. Поверхностная волна является двухмодовой и каждая ее мода обладает дисперсией, так как скорости обеих мод зависят от частоты. Согласно обеим моделям, объемная сдвиговая волна обладает дисперсией. Для градиентно-упругой среды при возрастании частоты скорость каждой моды поверхностной волны увеличивается и, если скорость нижней моды выходит снизу на горизонтальную асимптоту, скорость верхней моды сначала достигает максимума и только затем выходит сверху на эту горизонтальную асимптоту. При любом ненулевом значении волнового числа (или частоты) фазовая скорость сдвиговой волны больше скорости сдвиговой волны в классической среде. Скорость поверхностной волны не может быть больше фазовой скорости сдвиговой волны, а их равенство выполняется лишь в определенном частотном диапазоне. В редуцированной среде Коссера скорость верхней моды поверхностной волны с ростом частоты увеличивается и на больших частотах она возрастает неограниченно. Скорость нижней моды поверхностной волны уменьшается с ростом частоты, но во всем частотном диапазоне она остается больше фазовой скорости волны сдвига.</p>2024-12-30T12:34:37+03:00##submission.copyrightStatement##http://ppp.mech.unn.ru/index.php/ppp/article/view/847ПРЯМАЯ ФИЗИЧЕСКИ-ОРИЕНТИРОВАННАЯ УПРУГОВЯЗКОПЛАСТИЧЕСКАЯ МОДЕЛЬ: ПРИМЕНЕНИЕ ДЛЯ ИССЛЕДОВАНИЯ ВЛИЯНИЯ СВОБОДНОЙ ПОВЕРХНОСТИ НА НЕУПРУГОЕ ДЕФОРМИРОВАНИЕ МОНОКРИСТАЛЛИЧЕСКИХ ОБРАЗЦОВ2024-12-30T12:50:49+03:00Вяткин Я.В. Viatkinppp@mech.unn.ruТрусов П.В. Trusovppp@mech.unn.ru<p>Приведено обоснование актуальности детального, основанного на анализе физических механизмов неупругого деформирования исследования влияния свободных поверхностей образцов на результаты механических испытаний (масштабных факторов), обусловленное все более широким использованием миниатюрных изделий.</p> <p>Предлагаемая статья посвящена построению прямой модели упруговязкопластичности для описания поведения кристаллитов мезоуровня и ее применению для анализа влияния свободной поверхности на физико-механические свойства моно- и поликристаллических материалов/конструкций из металлов и сплавов. Описана базовая модель кристаллита на основе физических теорий пластичности, в которой явно учитываются механизмы неупругого деформирования и их носители. Рассматриваются гранецентрированные кристаллы, где пластические сдвиги могут реализовываться по 12 доступным системам дислокационного скольжения. В модели использованы закон нелинейного упрочнения с насыщением и подмодель решеточного спина. Предложен вариант соотношений для описания понижения критических касательных напряжений на системах скольжения вблизи свободной границы. Проведен ряд численных экспериментов по решению начально-краевых задач исследования деформирования монокристаллических образцов. Рассмотрены несколько сценариев нагружения и несколько характерных размеров образца с целью выявления наличия эффекта масштаба. Решения поставленных задач получены с помощью метода конечных элементов, реализованного в инженерном программном пакете. Конститутивная модель кристаллита и алгоритмы для ее работы реализованы в специальном программном модуле для описания пользовательских материалов. Результаты показали значительное влияние размера образца на механический отклик в процессе неупругого деформирования. Продемонстрировано снижение характерных значений предела текучести и напряжений течения образца с уменьшением его размеров.</p>2024-12-30T12:46:36+03:00##submission.copyrightStatement##http://ppp.mech.unn.ru/index.php/ppp/article/view/848АВТОРЫ2024-12-30T12:50:45+03:00Editorial Boardppp@mech.unn.ru<p>Авторы статей выпуска №86(4).</p>2024-12-30T12:50:01+03:00##submission.copyrightStatement##