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Проведено комплексное исследование влияния эксплуатационных
дефектов на механические характеристики полимерных слоистых компози-
ционных материалов. Отработана методика по нанесению дефектов, имити-
рующих внешние эксплуатационные нагрузки, с различной степенью по-
врежденности. При экспериментальных исследованиях производилась ре-
гистрация сигналов акустической эмиссии как при нанесении дефектов, так
и при последующих квазистатических испытаниях на растяжение. По полу-
ченным результатам проведен анализ взаимосвязи параметров акустической
эмиссии и процессов разрушения материала при механическом нагружении.
Методика исследования основана на сочетании экспериментальных методов
механических испытаний с современными подходами неразрушающего
контроля. Реализован системный подход к оценке повреждений, включаю-
щий в себя количественный анализ сигналов акустической эмиссии и их
корреляцию с макроскопическими характеристиками материала. Изучена
методика по интерпретации акустико-эмиссионных величин, позволяющая
дифференцировать различные механизмы разрушения композиционной
структуры. Анализ сигналов акустической эмиссии дает возможность интер-
претировать отдельные параметры сигналов и выявлять взаимосвязи между
этими параметрами. Поскольку анализ отдельных параметров акустической
эмиссии не дает полной картины повреждений, разработан комплексный
подход. Он сочетает исследование временных и частотных характеристик
сигналов, позволяя получить более точную оценку состояния материала. В
результате выявлено качественное влияние эксплуатационных дефектов раз-
ной величины на механические свойства композиционного материала. Полу-
ченные результаты могут использоваться для развития методов диагностики
композиционных материалов, применяемых в ответственных конструкциях.
Разработанная методология может быть использована для оценки остаточ-
ного ресурса и прогнозирования работоспособности композитных элемен-
тов в условиях эксплуатационного воздействия.
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Введение

Полимерные слоистые композиционные материалы широко применяются в
аэрокосмической, строительной и транспортной отраслях благодаря своей высокой
удельной прочности, коррозионной стойкости и возможности проектирования свойств
под конкретные эксплуатационные условия [1–4]. Однако их механическое поведение
существенно зависит от наличия эксплуатационных дефектов, таких как вмятины,
царапины и расслоения, которые могут возникать в процессе производства или экс-
плуатации [5–8]. Эти повреждения способны инициировать процессы разрушения,
снижая несущую способность материала и сокращая срок его службы [9–11].

Акустическая эмиссия (АЭ) является одним из наиболее эффективных методов
неразрушающего контроля, позволяющих регистрировать динамику накопления по-
вреждений в материалах в реальном времени [12–15]. Анализ параметров сигна-
лов АЭ, таких как энергия, частота и угол нарастания, предоставляет ценную инфор-
мацию о механизмах разрушения, включая растрескивание матрицы, расслоение и
разрыв волокон [16–19]. В частности, зависимость RA–AF (скорость нарастания
сигнала и его средняя частота) позволяет различать типы повреждений, что делает
этот метод перспективным для диагностики состояния композитов [20–22].

Несмотря на значительное количество исследований, посвященных влиянию
дефектов на механические свойства полимерных композитов, вопросы, связанные
с корреляцией параметров АЭ и стадий разрушения при различных типах повреж-
дений, остаются актуальными [23–25]. В настоящей статье представлены результаты
экспериментального исследования влияния эксплуатационных дефектов (вмятин и
царапин) на механическое поведение стеклопластика. Для анализа деформирования
и разрушения используется метод акустической эмиссии.

Целью исследования является оценка влияния предварительно нанесенных
дефектов на механические характеристики материала и идентификация типов по-
вреждений на основе анализа сигналов АЭ. Полученные результаты могут быть ис-
пользованы для разработки методик неразрушающего контроля и прогнозирования
остаточного ресурса композиционных конструкций.

Методика проведения исследования

Была разработана и реализована программа экспериментальных исследований
на образцах стеклопластика в виде полосок с размерами 150206 мм, разработаны
и успешно применены методики нанесения поверхностных повреждений при контро-
лируемых параметрах нагружения (сила, перемещение). Суть методики нанесения
дефекта в виде вмятины заключалась в приложении нагрузки в испытательной сис-
теме Instron 5982 (100 кН) к образцу стеклопластика в поперечном направлении
через стальной вал с полусферическим наконечником диаметром 10 мм (рис. 1).

В ходе предварительных испытаний по нанесению имитационных дефектов
поверхности были установлены диапазоны значений нагрузки вдавливания стального
вала с полусферическим наконечником, которые либо совсем не приводили к по-
вреждениям образца, либо полученные повреждения не оказывали влияния на несу-
щую способность стеклопластика. Также были установлены диапазоны значений
нагрузок, которые в процессе вдавливания приводили к появлению видимых макро-
дефектов (сквозные трещины, разрыв поверхностных слоев и т.д.) (рис. 2). Таким
образом, методика нанесения вмятины была реализована при различных уровнях
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нагрузки (10–22 кН с шагом 2–3 кН) вдавливания стального вала в образец стекло-
пластика, которые наносили умеренные повреждения материалу.

Методика нанесения дефекта царапина реализована аналогичным способом,
только вместо стального вала со сферическим наконечником повреждение образцов
стеклопластика наносилось стальным лезвием шириной 10 мм до нагрузки 1 кН и
перемещения захвата машины на 1 мм. Предварительные испытания по нанесению
повреждений проводились совместно с системой регистрации сигналов акустической
эмиссии для анализа поврежденности образцов.

Были проведены серии квазистатических испытаний на растяжение образцов
стеклопластика, вырезанных вдоль основы. Испытаны образцы без нанесения де-
фектов, образцы с дефектом вмятина, нанесенным нагрузкой от 10 до 22 кН, и об-
разцы с нанесением поперечных царапин шириной 10 мм (нагрузка 1 кН). Испытания
проводились на испытательной системе Instron 5982 (100 кН) совместно с системой
регистрации сигналов акустической эмиссии Vallen AMSY-6 (рис. 3).

Сигналы акустической эмиссии регистрировались системой Vallen AMSY-6. Для
регистрации сигналов использовался один широкополосный датчик AE144A с
диапазоном частот 100–500 кГц и предусилитель с коэффициентом усиления 34 дБ.
Датчик крепился к образцу с помощью крепежной системы, частота дискретизации
данных 10 МГц, пороговое значение регистрации сигналов АЭ 40 дБ. В качестве
информативных параметров использовались энергетический параметр, длительность
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Рис. 1. Нанесение вмятины (а), диаграммы нанесения дефекта вмятины
нагрузкой до 10, 12 и 15 кН (б)
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Рис. 2. Соответствие прилагаемой нагрузки видимым повреждениям поверхности образцов
стеклопластика (а); критическая нагрузка 22 кН, приводящая к разрушению образца (б)
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сигналов АЭ и частота спектрального максимума (характеристика быстрого преобра-
зования Фурье). Энергетический параметр сигналов АЭ рассчитывался с помощью
специальной программной опции в единицах энергии (eu), 1 eu = 10–14 В2с.

Результаты исследования

При нанесении предварительных дефектов производилась регистрация сигналов
акустической эмиссии. По полученным данным были построены зависимости
энергетического параметра E от времени (рис. 4).

Рис. 3. Образец стеклопластика в процессе испытания на растяжение
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Рис. 4. Зависимость энергетического параметра сигналов АЭ
от времени при нанесении предварительных повреждений
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Образование и распространение микротрещин – это основные причины
разрушения образцов, а также источники акустических сигналов. Характеристики
зависимости угла нарастания RA и средней частоты AF акустических сигналов
позволяют определять тип разрушения в образцах. Угол нарастания RA определяется
как отношение времени нарастания к максимальной амплитуде, средняя частота –
отношение количества отсчетов в одном сигнале к длительности этого сигнала
(рис. 5).

На рис. 6 показаны характеристики RA–AF-распределения для образцов при
нанесении предварительных дефектов типа вмятина.

Были построены зависимости пиковых частот сигналов АЭ от времени, которые
получены с применением быстрого преобразования Фурье. На диаграммах (рис. 7)
можно выделить три диапазона частот: низкочастотный – от 50 до 120 кГц,
среднечастотный – от 180 до 350 кГц и высокочастотный – от 400 до 600 кГц.

После нанесения предварительных дефектов были проведены испытания на
квазистатическое растяжение образцов. На рис. 8 представлены диаграммы
нагружения (а) и соответствующие им зависимости кумулятивной энергии сигналов
от времени (б).

Также были построены зависимости пиковых частот от времени для испытаний
на квазистатическое растяжение (рис. 9). Методика и датчики соответствовали тем,
которые использовались в исследовании при нанесении дефектов.

Примененная методика для зависимости RA–AF-распределения была исполь-
зована при квазистатическом растяжении (рис. 10).

Обсуждение результатов

Нанесение предварительных дефектов. По значениям кумулятивной энергии
сигналов можно судить о процессе накопления повреждений в материале. Из диаграмм
(см. рис. 4) следует, что при надавливании с нагрузкой 10 и 12 кН сигналы имеют
невысокую энергию, при этом зафиксированы отдельные сигналы с энергией в 8–
10 раз выше среднего значения, из-за чего диаграмма кумулятивной энергии имеет
резкие всплески. При увеличении значений нагрузки вдавливания энергия сигналов
возрастает более равномерно, при нагрузке в 22 кН отдельные всплески энергии
лежат в окрестностях кривой кумулятивной энергии.

На диаграммах зависимости RA–AF (см. рис. 6) можно видеть, что средняя
частота находится в диапазоне 100–500 кГц. При нанесении дефектов с нагрузкой

Рис. 5. Графическое представление формы сигнала акустической эмиссии

A, дБ

t, c

Первое пересечение
порога

Последнее пересечение
порога

Длительность      Время
нарастания Пиковая амплитуда

Пороговое значение

Кол-во отсчетов

0



544

10–12 кН в материале преимущественно происходит растрескивание матрицы, при
этом сигналы АЭ распределены вдоль оси AF. При увеличении нагрузок до 17, 20 и
22 кН в материале было отмечено расслоение, при этом значения RA увеличиваются.
Стоит отметить, что значения параметра RA возрастают в диапазоне 200–400 кГц
средней частоты сигналов.

На диаграммах пиковых частот сигналов (см. рис. 7) видно, что при низких
значениях нагрузки сигналы зафиксированы преимущественно в низкочастотном
диапазоне, при увеличении нагрузки появляются сигналы в среднем диапазоне, и
при критических нагрузках, вызывающих разрушение образца, присутствуют сиг-
налы в высокочастотном диапазоне. Выделенные диапазоны частот соответствуют
растрескиванию матрицы (низкие частоты), расслоению (средние частоты) и разрыву
волокон (высокие частоты).

Исходя из анализа параметров сигналов АЭ при контролируемом нанесении
дефектов, можно сделать выводы о соответствии изменения характеристик сигналов
и деформациях, происходящих в материале.
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Рис. 6. RA–AF-зависимости сигналов АЭ при нанесении предварительных повреждений
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Испытания на квазистатическое растяжение. На основе данных АЭ, получен-
ных при контролируемом деформировании образцов, был проведен анализ сигналов
в испытаниях на квазистатическое растяжение. В испытаниях на квазистатическое
растяжение уровень максимальной нагрузки, после которой образец разрушается,
уменьшается при увеличении значений предварительных дефектов, однако у
кумулятивной энергии образцов не прослеживается подобная прямая зависимость
(см. рис. 8). Минимальное значение кумулятивной энергии зафиксировано у образцов
с наибольшими предварительными нагрузками, что говорит о разрушении материала
до проведения испытаний на растяжение.

При анализе пиковых частот сигналов (см. рис. 9) количество сигналов зафикси-
ровано гораздо выше, чем при предварительно нанесенных дефектах, а диапазоны
имеют менее четкие границы. Сигналы, соответствующие разрыву волокон, появ-
ляются при разрушении у образцов с меньшим уровнем предварительной нагрузки.
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Рис. 7. Зависимость пиковых частот сигналов АЭ от времени
при нанесении предварительных повреждений
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У образцов с дефектами от 17 кН сигналы в высокочастотном диапазоне зафикси-
рованы значительно раньше и прослеживаются на протяжении всего испытания.

Полученные зависимости RA–AF при квазистатическом растяжении (см.
рис. 10) менее разнообразны, чем при нанесении дефектов. Однако при увеличении
предварительной нагрузки можно наблюдать смещение основной массы сигналов в
более высокие значения параметров RA и AF, что может свидетельствовать об уве-
личении числа микротрещин на границе волокно/матрица и о более интенсивном
растрескивании матрицы. «Вытягивание» очага сигналов по линии RA говорит о бо-
лее интенсивном накоплении повреждений в материале из-за более высоких пред-
варительных нагрузок.
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Рис. 9. Зависимость пиковых частот сигналов АЭ от времени, совмещенные
с диаграммами нагружения, при испытаниях на растяжение

образцов с предварительно нанесенными дефектами
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Выводы

Испытания образцов с нанесением дефектов и последующим квазистатическим
растяжением показали связь параметрического анализа пиковых частот сигналов
АЭ и RA–AF-распределения с механическим поведением полимерного материала
под нагрузкой. В частности, зафиксировано изменение времени нарастания сигналов
и, соответственно, угла нарастания и средней частоты сигналов при смене механизмов
разрушения. При рассмотрении механизмов разрушения в материале анализ одного
параметра не является показательным и требует подтверждения в виде построения
зависимостей других параметров. Зависимость RA–AF возможно использовать как
вспомогательный метод при изучении процесса накопления повреждений и разру-
шения материала. Также указанный метод имеет преимущество за счет того, что ис-
пользует исходные данные параметров сигнала и не требует сложных преобразований
для анализа.

Исследование было проведено, методически и качественно отработано на модель-
ном материале. Несмотря на то, что метод АЭ позволяет отследить изменения в
структуре материала при нагрузке, с его помощью невозможно количественно оце-
нить степень поврежденности материала. Для этого зачастую рекомендуется исполь-
зовать дополнительные методы неразрушающего контроля, такие как ультразвуковой
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Рис. 10. Зависимость RA–AF сигналов АЭ при испытаниях
на растяжение образцов с предварительно нанесенными дефектами



548

метод, термографию или методом корреляции цифровых изображений. При совмест-
ном использовании нескольких методов возможно косвенно дать количественную
оценку снижения прочности материала при наличии тех или иных дефектов.

Исследование выполнено в Пермском национальном исследовательском поли-
техническом университете с использованием уникальной научной установки (УНУ)
«Комплекс испытательного и диагностического оборудования для исследования
свойств конструкционных и функциональных материалов при сложных термомеха-
нических воздействиях http://ckp-rf.ru/usu/501309/».
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This study presents a comprehensive investigation of the influence of operational defects on
the mechanical properties of polymer laminated composite materials. A methodology was
developed for introducing defects simulating external operational loads with varying degrees
of damage severity. During experimental studies, acoustic emission signals were recorded both
during defect formation and subsequent quasi-static tensile tests. The obtained data were
used to analyze the correlation between acoustic emission parameters and material failure
processes under mechanical loading. The research methodology combines experimental
mechanical testing with advanced non-destructive evaluation techniques. A systematic
approach to damage assessment was implemented, incorporating quantitative analysis of
acoustic emission signals and their correlation with macroscopic material characteristics. The
study examined methods for interpreting acoustic emission data to differentiate between various
failure mechanisms in the composite structure. Acoustic emission signal analysis employed
two principal approaches: interpretation of individual signal parameters and investigation of
interparameter relationships. Recognizing that analysis of single acoustic emission parameters
provides incomplete damage characterization, the study developed an integrated approach
combining temporal and frequency-domain signal analysis, enabling more accurate material
condition assessment. The results demonstrate the qualitative influence of operational defects
of different magnitudes on the mechanical properties of the composite material. These findings
can contribute to the development of diagnostic methods for composite materials used in
critical structures. The proposed methodology may be applied for residual life assessment and
performance prediction of composite components under operational conditions.
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