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Рассмотрена задача о реконструкции переменных физико-механических
характеристик функционально-градиентных тел, находящихся под действием
внешних статических нагрузок при наличии ограничений на область съема
дополнительной информации. Предложен подход, позволяющий свести
обратную задачу с величинами, заданными на границе, к обратной задаче в
первой постановке, к задаче, в которой нужно найти неизвестные переменные
коэффициенты по информации о поле, заданном во всей области. Предло-
жен аналог метода Галеркина для построения аппроксимации поля. Рас-
смотрен пример обратной задачи по реконструкции изгибной жесткости
консольно закрепленной с одного торца балки, изгибаемой различной на-
грузкой, в том числе распределенной, а также силой и/или моментом, прило-
женными к другому торцу. Дополнительная информация о прогибе задана
на части балки, свободной от нагрузки. Реализовано несколько вариантов
аппроксимации функции прогиба с последующим построением изгибной
жесткости с использованием регуляризации по А.Н. Тихонову. Разрабо-
танная схема позволила с высокой точностью восстановить изгибную жест-
кость в области, доступной для съема дополнительной информации. В ос-
тальной области вторая производная прогиба доопределяется квадратичной
функцией с сохранением гладкости и с некоторой погрешностью находится
изгибная жесткость. Проведена серия вычислительных экспериментов, где
область съема дополнительной информации составляла 50 и 65% от общей
области. В качестве второго примера предложен подход, позволяющий осу-
ществить реконструкцию податливости (функции, обратно пропорциональ-
ной жесткости) в классе полиномиальных функций. Задача сведена к реше-
нию алгебраической системы уравнений относительно неизвестных коэф-
фициентов полинома. Вычислен определитель системы, проанализирована
обусловленность матрицы в зависимости от точек съема информации о про-
гибе, даны рекомендации по их выбору. Представлена серия вычислительных
экспериментов.
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Введение

Для обеспечения эксплуатационных качеств конструкций требуется на всех этапах
достаточно точно определять упругие характеристики (модуль Юнга, коэффициент
Пуассона). Современные функционально-градиентные (ФГ) материалы все чаще
имеют неоднородные свойства [1–5], что продиктовано обеспечением некоторо-
го оптимального критерия качества.Таким образом, возрастает необходимость рас-
смотрения задач по реконструкции законов их изменения на основе анализа отклика
на некоторое воздействие.

Возникает класс обратных задач, в которых дополнительная информация задана
на части внешней границы области, занимаемой телом. Один из возможных алго-
ритмов решения таких задач основан на процедуре алгебраизации [6, 7]: сведению к
алгебраической проблеме, как правило к системе линейных алгебраических урав-
нений. Законы неоднородности ФГ-материалов обычно описываются простыми функ-
циями [8–10].

Наиболее распространенный подход к решению обратных задач основан на
составлении функционала невязки и его минимизации каким-либо методом. В статье
[11] предложен метод нахождения упругих постоянных анизотропного тела при
помощи итерационной минимизации функционала невязки. Также для решения
двумерных обратных задач в первой постановке активно применяются нейронные
сети. В [12] рассматривается обратная задача об определении переменного модуля
упругости на основе измеренных полей смещения/деформации. Вместо класси-
ческого итерационного решателя используется подход глубокого обучения нейро-
сетей. В [13] аналогично решена обратная задача по обнаружению пространственной
зависимости от координат модуля упругости и коэффициента Пуассона.

Динамическое нагружение позволяет получить больше информации о переменных
упругих характеристиках зондируемого объекта [14]. Обратные задачи, в которых
дополнительной информацией является амплитудно-частотная характеристика,
измеренная в области приложения нагрузки, в основном решены итерационным спо-
собом, где на каждой итерации решается прямая задача с известными упругими ха-
рактеристиками, а поправки к ним находятся при помощи метода регуляризации
А.Н. Тихонова [15] и на основе решения системы интегральных уравнений Фредгольма
первого рода с гладкими ядрами [16–19]. В настоящем исследовании предлагается
рассмотреть иной тип обратных задач со статическими зондирующими нагрузками
и областью съема данных, свободной от нагрузок.

Постановка задачи

Будем рассматривать одну из постановок обратных коэффициентных задач
изотропной теории упругости в статической постановке.

Пусть изотропное упругое тело занимает объем V и ограничено поверхностью S,
упругие модули  = (x) и  = (x) являются гладкими функциями координат, x  V.
Так, например, для ФГ-материалов, ставших в последние годы предметом много-
численных исследований, эти функции обычно представимы в виде полиномиальных
зависимостей невысокого порядка [8, 16], что чаще всего обусловлено технологи-
ческим процессом их производства. Будем считать, что на некоторой части границы
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S2  S действует самоуравновешенная нагрузка pi, остальная часть границы S1  S
свободна от нагрузок и на ее части S10  S1 заданы (измерены) компоненты вектора
перемещений fi. Для несамоуравновешенной нагрузки часть границы S1u  S1
закреплена. Требуется по дополнительной информации определить функции (x) и
(x).  Возможна более простая постановка, когда переменным является только модуль
Юнга E(x), а коэффициент Пуассона постоянен и известен.

Математическая постановка задачи представима в форме уравнений равновесия
и закона Гука
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Граничные условия записываются в виде
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Задача (1)–(3) представляет собой обобщенную задачу относительно компонент
вектора смещений ui и функций (x) и (x). Соответствующий оператор является
билинейным (линейным по смещениям при известных модулях, линейным по модулям
при известных смещениях), и обычно решения таких задач строятся при помощи
итерационного процесса [14], на каждом шаге которого необходимо решать прямые
задачи с известными n(x) и n(x) и системы интегральных уравнений Фредгольма
1-го рода с гладкими ядрами для нахождения поправок и перехода к следующей
итерации [17–19]. В настоящей статье предлагается некоторое обобщение прямых
методов [6, 7] применительно к сформулированной обратной задаче.

Пусть {k} – некоторая система линейно независимых функций в V; будем разыс-
кивать решения прямой задачи (1), (2) в виде линейной комбинации
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Это поле смещений порождает некоторое граничное поле ,
10Siu  зависящее от функ-

ций .
10Skk   Для определения коэффициентов aik в (4) получим систему функ-

циональных уравнений
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которая сводится к линейной алгебраической системе с помощью метода Галеркина
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Разрешив систему (6) (возможно, используя метод регуляризации А.Н. Тихонова
[15]), найдем aik и, следовательно, поле смещений внутри V. Таким образом, исходная
обратная задача сведена к обратной задаче первого типа согласно классификации,
введенной в [14]. Она является линейной относительно  и , которые удовлетворяют
системе треx дифференциальных уравнений 1-го порядка, дополненной данными
Коши вида (2).
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В общем виде задача первого типа может быть решена с помощью сочетания
проекционных подходов и методов регуляризации. В частных случаях неоднородности
и геометрии области решение может быть построено и другими способами. Таковыми
являются задачи с одномерными законами неоднородности, например, задачи об
осесимметричном деформировании цилиндра или изгибе балки.

Приведем несколько вариантов реализации одномерных обратных задач на при-
мере изгиба консольно закрепленной балки переменной жесткости.

Пример. Определение переменной жесткости балки при изгибе

Рассмотрим равновесие консольно защемленной на одном торце балки дли-
ной l под действием распределенной на отрезке ],[ 0 ll  нагрузки p(x) и силы и момен-
та, приложенных на другом торце. Уравнение равновесия имеет вид [20]:
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с граничными условиями
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где D = D(x) – переменная изгибная жесткость.
В обратной задаче в соответствии с изложенным выше будем считать, что заданы

смещения на части границы объекта, где не действует нагрузка, что для балки приводит
к заданию прогиба на отрезке

.0),( 0lxxfw  (9)

На основе дополнительной информации (9) определим функцию D(x).
Основные этапы решения задачи (7)–(9) состоят в следующем: на первом этапе

выбирается система координатных функций ,...,,2,1],,0[2 NklLk   решение пря-
мой задачи отыскивается в виде
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коэффициенты ak определяются из соотношения (k = k):
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В случае когда )(xf  непрерывна на отрезке ,0 0lx   определим коэффициен-
ты ak из системы с помощью метода Галеркина
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В случае выбора ,...,,2,1,1 Nkx k
k  

 получим выражение для элементов матри-
цы системы .)3( 13

0
  jklA jk

kj
Заметим, что определитель такой матрицы будет стремиться к нулю с увеличением

числа используемых координатных функций ).( N  В модельных расчетах будем
ограничиваться размерностями .83  N
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В случае когда )(xf  задана в наборе точек, для определения коэффициентов
разложения более удобно использовать минимизацию функционала невязки (метод
наименьших квадратов):
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Разрешив линейную систему, порожденную задачей (12), можно найти прибли-
женное значение всюду в области .0),( lxxw 

Описанный ход построения решения и нахождения D(x) основан на решении
уравнения (7) и выполнении граничных условий (8), откуда имеем
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h(x) в (13) – функция Хевисайда.

Вычислительный эксперимент 1

Представим результаты вычислительных экспериментов, полагая

.65,05,0,)(,0,1 0000 или llllsspPM 

Выполним аппроксимацию измеренных данных (9) в соответствии с (12). Для
получения более высокой точности аппроксимации в окрестности точки 0l  будем
выполнять измерения в сгущающемся наборе точек (рис. 1). На представленных
рисунках приведены результаты расчетов, где по горизонтали откладывается безраз-
мерная координата  = x/l.

По функции w(x), заданной на отрезке ,0 0lx   вычислим ,w   затем доопре-
делим w   на весь отрезок квадратичной функцией с сохранением гладкости, ис-
пользуя значения производных ).(),(),( 0

)4(
00 lwlwlw   На основе (13) получим иско-

мое решение обратной задачи. На рис. 2–4 представлены результаты вычислительных

Рис. 1
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экспериментов для различных типов функций (монотонно убывающих, монотонно
возрастающих, немонотонных), где найденную функцию будем обозначать точками,
а точную – сплошной линией.

В случае когда 0l  близко к ,l  нет необходимости доопределять функцию w  (апп-
проксимация  

N
k kka1  достаточно хорошо описывает функцию w   в области

,0 0 hlx   где h > 0 достаточно мало).

Рис. 2
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Нетрудно заметить, что результаты реконструкции при этом подходе не всегда
обладают достаточной точностью (см. рис. 3), поэтому представим иной подход на
примере этой же обратной задачи для балки. Этот подход базируется на некотором
априорном представлении искомой функции, что приводит к сужению пространства
поиска и далее – к линейной системе.

Вычислительный эксперимент 2

Будем использовать функцию переменной податливости  ).()( 1 xDxY 
Ограничимся рассмотрением случая, когда податливость является полиномом
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прогиба ),...,,,,,()( 210 nccccxwxw   зависящий от коэффициентов .,0, njc j 

Выполняя в точках jx  из доступной области  n + 1 условия ),...,,,,( 210 nj ccccxw
),( jxf  получим линейную алгебраическую систему относительно коэффициентов
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Проанализируем матрицу системы (16). Наиболее интересны случаи n = 1, 2, 3.
Таких аппроксимаций может оказаться достаточно для определения характеристик
монотонных и немонотонных функций с одним экстремумом. Отметим также, что
определитель )(det kjA  возникающей линейной системы (в случае )0)(~ MxM 
пропорционален определителю Вандермонда [21], что позволяет наиболее эффективно
выбирать точки измерения. Нетрудно установить, что
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Для улучшения обусловленности системы следует выбирать такие точки:

0201 ,666,0 lxlx   при n = 1 и 030201 ,808,0,442,0 lxlxlx   при n = 2.
Для единичной силы :)()(~

0 lxPxM 
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Для распределенной нагрузки p(x) = p, имеем
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Отметим, что для улучшения обусловленности системы лучше всего выбирать
равноотстоящие точки xj. Приведем далее некоторые частные примеры.

Пусть .4,0,1)(,0,1,1)( 0001 llspPMxxY   Осуществим поиск реше-
ния обратной задачи в более широком классе (зададим n = 2). При съеме дополни-
тельной информации будем разбивать отрезок 00 lx j   на равные части. В ка-
честве результата реконструкции получена функция Y2(x) = 1 + x + (4,06x2 + 1,13x –
– 1,125)10–7,  где специально выделена часть, совпадающая с точной функцией.

Пусть .1)( 3
3 xxY   Зададим n = 3. Получим решение Y3(x) = 1,0108x3 –

– 0,0068x2 + 0,0012x + 0,9999, мало отличающееся от заданного.
В среднем погрешность реконструкции составила %10 5

 для функций при n =
= 2 и %25,0  для функций при n = 3. Определители возникающих систем равны,
соответственно, .10,10 8

3
4

2
 

Заключение

Исследовано решение обратной задачи по идентификации упругих характеристик
неоднородных тел, для которых дополнительная информация задается на части гра-
ницы. Предложен подход по сведению такой задачи к обратной задаче в первой по-
становке. Рассмотрен пример решения обратной задачи для консольной балки, нагру-
женной на правом конце силой, моментом и частично распределенной нагрузкой в
окрестности этого торца. Предложены две реализации решения обратной задачи.
Первая связана с аппроксимацией и доопределением на закрытую от наблюдения
часть. Вторая реализация решения обратной задачи связана с сужением класса поиска
до полиномиальных функций податливости. Приведены результаты вычислительных
экспериментов.
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The problem of reconstructing variable characteristics of functionally gradient bodies under
the action of external static loads with restrictions on the region of additional information
retrieval is considered. An approach is proposed that allows reducing the inverse problem with
data specified on the boundary to the inverse problem in the first statement: to the problem in
which it is necessary to find unknown variable coefficients from information on the field
specified in the entire region. An analogue of the Galerkin method for constructing an
approximation of the field is proposed. An example of an inverse problem for reconstructing the
flexural rigidity of a beam cantilevered at one end and bent by various loads, including distributed
ones, as well as a force and/or moment applied to the other end is considered. Additional
information on the deflection is specified on the part of the beam free of load. Several variants
of approximating the deflection function with subsequent construction of the flexural rigidity
using regularization according to A.N. Tikhonov are implemented. The developed scheme
made it possible to reconstruct the flexural rigidity with high accuracy in the region available
for retrieving additional information. In the remaining area, the second derivative of the deflection
is completed by continuity in a quadratic manner and the flexural rigidity is found with some
error. A series of computational experiments was conducted where the area of additional data
gathered 50 and 65 percent of the total. As a second example, an approach is proposed that
allows for the reconstruction of compliance (a function inversely proportional to rigidity) in the
class of polynomial functions. The problem is reduced to solving an algebraic system with
respect to unknown coefficients of the polynomial. The determinant of the system is calculated,
the conditionality of the matrix is analyzed depending on the points of information removal
about the deflection, and recommendations are given for their selection. A series of computational
experiments is presented.

Keywords: inverse problem, functional-gradient material, projection schemes, rod, boundary
fields.
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