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Исследован вопрос возникновения и формирования дислокационных
ячеистых разориентированнных структур на основе предложенной эволю-
ционной модели. Модель представляет собой систему уравнений материаль-
ного баланса для двух типов дислокаций: подвижных дислокаций и дис-
локаций в связанном состоянии (малоподвижных). Предполагается, что дис-
локации движутся под действием приложенного внешнего напряжения в
противоположных направлениях с постоянной скоростью. Дальнодействую-
щим напряжением дислокаций пренебрегается, но учитывается их локальное
взаимодействие, а именно: размножение, иммобилизация, рекомбинация
и сток дислокаций. Модель в целом представляет собой систему четырех
дифференциальных уравнений в частных производных со сложной генера-
ционно-рекомбинационной динамикой. Исходная система уравнений пре-
образуется к системе для суммарной и избыточной плотностей дислокаций,
и для новых переменных находятся возможные однородные стационарные
состояния. Их оказывается два: первое – только подвижные дислокации,
второе – подвижные и малоподвижные дислокации для их суммарной плот-
ности. Избыточная плотность в обоих состояниях равна нулю. Вводится уп-
равляющий параметр системы, характеризующий объемную долю убываю-
щей с ростом деформации субструктуры, на которой происходит сток дисло-
каций. Далее проводится линейный и нелинейный анализ системы. Установ-
лено, что по мере уменьшения управляющего параметра решения системы,
отраженные на бифуркационной диаграмме, образуют три области. В пер-
вой области устойчивым является однородное состояние только для подвиж-
ных дислокаций. Во второй области устойчиво однородное решение для
обоих типов дислокаций. В третьей области устойчивым становится, как по-
казал нелинейный анализ, пространственно-неоднородное периодическое
решение для суммарной и избыточной плотностей дислокаций, которое и
характеризует свойства ячеистой структуры.
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Введение

Деформируемый кристалл представляет собой сложную динамическую систему,
в которой под воздействием внешней нагрузки кристаллический образец переводится
в состояние, далекое от термодинамического равновесия. Это приводит к развитию
в системе диссипативных неустойчивостей, порождающих образование различно-
го рода неоднородных дефектных структур, в том числе дислокационных ячеистых
структур [1–4].

По-видимому, впервые на эти особенности процесса пластической деформации
в деформируемых кристаллах было обращено внимание в статьях [5–7], где на основе
некоторых модельных уравнений диффузионного типа для плотности дислокаций
была описана неустойчивость тьюрингова типа [8], а также ее развитие, приводящее
к спонтанному возникновению периодической дислокационной структуры. Возник-
новение таких структур описывалось в рамках теории диссипативнывных структур
[9] или, иначе, теории самоорганизации [10].

В большинстве перечисленных публикаций основной акцент делался на рас-
смотрении эволюции суммарной плотности дислокаций и неявно предполагалось,
что пространственное распределение дислокационного заряда однородно и равно
нулю. Такое допущение является довольно сильным приближением и влечет за собой
невозможность описать формирование разориентированных структур, соответственно
зернистой структуры, как в моно- так и поликристаллах. Кроме того, в этих публика-
циях постулируются диффузионные процессы, требующие, вообще говоря, деталь-
ного обоснования, связанного с упругим взаимодействием, как в ансамбле дислока-
ций [11].

Анализируя результаты экспериментальных работ по эволюции дислокационных
структур при пластической деформации металлических материалов [12, 13], можно
отметить закономерности, которые наблюдаются при эволюции субструктур и которые
необходимо учитывать при построении дислокационной модели. Выделим из них
следующие две. Во-первых, при пластической деформации дислокации в кристалле
могут находиться в разных динамических состояниях (подвижном, малоподвижном,
неподвижном и др.), поэтому для описания возникновения дислокационных структур
необходимо учитывать эту особенность [14]. Во-вторых, на каждой стадии пласти-
ческой деформации сосуществуют, как правило, два преобладающих типа суб-
структур [15] подобно областям сосуществования фаз в многокомпонентных сис-
темах. Поэтому одним из управляющих параметров системы можно считать объемную
долю «предыдущей» субструктуры (например, клубковой), убывающую с ростом
деформации . По мере убывания такой субструктуры однородное состояние системы
теряет свою устойчивость, возникает и формируется новая структура – ячеистая, ко-
торая также эволюционирует от неразориентированной к разориентированной и далее
к субзеренной структуре.

В настоящей статье основное внимание уделяется закономерности формирования
диссипативных дислокационных структур в рамках системы эволюционных урав-
нений для дислокационного ансабля [16]. На основе этих уравнений развивается те-
ория зарождения пространственно неоднородных дислокационных структур, воз-
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никающих в результате развития генерационно-рекомбинационной неустойчивости.
Нелинейная стадия эволюции системы исследуется на основе теории диссипативных
структур [9, 10].

1. Модель ячеистой структуры

Математически модель эволюции дислокационного ансамбля может быть по-
строена на основе закона сохранения вектора Бюргерса. Этот закон, записанный в
дифференциальной форме, имеет вид [17, 18]:
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где элементы тензоров плотности ik и потока jik дислокаций линейно зависят от
скалярной плотности дислокаций a(r, t):
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Здесь eijm – единичный антисимметричный тензор; a = {s,} – обобщенный индекс,
где s нумеpует дислокации по их подвижности, а  различает возможное напpавление
вектоpа Бюpгеpса дислокации ba по отношению к единичному вектоpу I, касатель-
ному к линии дислокации.

Подставляя (2) в уравнения (1), получаем
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откуда следует, что в общем случае для плотности дислокаций a(r, t) справедливы
эволюционные уравнения материального баланса [11, 19]:
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Здесь Fa(a) – нелинейные функции, определяемые спецификой кинетических ме-
ханизмов дислокационных реакций; va = va(e) – скоpость скольжения дислока-
ций, которую в дальнейшнм будем считать постоянной; e – компонента внешнего
напряжения, обеспечивающая движение дислокаций,

Учтем указанные выше закономерности при построении модели. Введем в рас-
смотрение два типа дислокаций: подвижные, нумеруемые индексом s = 1, и мало-
подвижные (s = 2). Каждый тип дислокаций, кроме того, различается направлением
вектора Бюргерса ( = ±) и, соответственно, направлением скорости перемещения.

При записи эволюционных уравнений ограничимся рассмотрением следующих
механизмов изменения плотности дислокаций: рождение подвижных дислокаций
при пластической деформации объемными источниками типа Франка – Рида; захват
дислокаций в дипольные конфигурации с последующей аннигиляцией; иммобили-
зация подвижных на малоподвижных дислокациях с переходом быстрых дислокаций
в состояние медленных; сток дислокаций на различных дислокационных комплексах
(будем характеризовать их плотностью f) другого структурного уровня, обладающе-
го существенно большим временем релаксации к равновесному состоянию.

Будем считать, что процесс пластической деформации развивается в направле-
нии некоторой системы скольжения, например вдоль оси 0x. Тогда, учитывая выше-
указанные механизмы генерации и локального взаимодействия дислокаций, для ска-
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лярной плотности положительных ),( txs
  и отрицательных ),( txs

  дислокаций,
распространяющихся вдоль оси 0x со скоростями Vs, причем ,== sss VVV    систе-
му (4) запишем в виде [16]:
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где 0 – коэффициент размножения дислокаций по механизму Франка – Рида [18],
s = Vsh – коэффициенты аннигиляции (h = Gb/(8e) – радиус захвата дислокаций
в дипольные конфигурации [7]), f = V1r – коэффициент иммобилизации [7] (r  h –
характерное расстояние, на котором происходит захват подвижных дислокаций мало-
подвижными),  fs = Vshf  – коэффициенты стока дислокаций на убывающей субструк-
туре [15].

Целесообразно при исследовании системы (5)–(8) ввести суммарную и избы-
точную плотности дислокаций:
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Тогда систему (5)–(8) можно представить в форме:
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Приравнивая правые части системы (10)–(13) к нулю, находим два стационар-
ных однородных решения:
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Рассмотрим устойчивость состояния равновесия (14), используя первый метод
Ляпунова (устойчивость по линейному приближению) [10]. Линеаризуя систему
(10)–(13) в окрестности этого состояния, получаем:
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Нетрудно заметить, что при 0<2
(0)
1 ff   все коэффициенты при переменных

в правой части (16)–(19) отрицательны. Из этого следует [16], что состояние (14)
устойчиво. При 0>2

(0)
1 ff   переменная 2 в уравнении (17) нарастает, что приво-

дит к неустойчивости этого состояния. Таким образом, состояние (14) устойчиво,
если выполняется условие
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Если учесть, что f2 = V2hf , f = V1r и 1 = V1h, то неравенство (20) можно за-
писать в виде:
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где введены безразмерные параметры  = h/r и  = V2/V1. Физически параметр 
порядка единицы, а параметр  < 1, так как скорость малоподвижных дислокаций
по предположению меньше скорости подвижных дислокаций.

2. Неустойчивость однородного состояния

Обратимся к исследованию состояния равновесия (15). Из требования 02 > 0
следует, что состояние (12) существует при
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то есть второе состояние равновесия реализуется, когда первое состояние (11) яв-
ляется неустойчивым.

Введем в рассмотрение параметр  = f /02, убывающий с ростом деформации
и характеризующий объемную долю субструктуры, на которой происходит сток дис-
локаций, и параметр m = 02/01. Тогда условие (22) можно представить также в
виде  < 0 = (m)–1. Параметр  будем считать управляющим параметром.

Перейдем к безразмерным переменным
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в системе уравнений (10)–(13) относительно состояния равновесия (15). В результате
несложных преобразований имеем:
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где введены безразмерные параметры:
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Запишем систему (25)–(28) в матричной форме:
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Здесь q = {qj} – вектор столбец ,4,1 )( j  A – линейный матричный оператор, опре-
деляемый как
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N(q) = {Nj} – нелинейный вектор, где Nj представляют собой нелинейные квадра-
тичные слагаемые правой части системы (25)–(28).

С учетом (24) будем считать, что система (25)–(28) удовлетворяет периодическим
условиям

,,=, )()( tLxqtxq jj  (32)

где L =Lr01, L – размер кристалла.
Рассмотрим устойчивость состояния равновесия (15), которое в данном случае

имеет вид

.41,=0,=0 jq j (33)

Опускаем в (30) нелинейный член N(q) и полагаем

,exp= )( txik Vq (34)

где V = {vj} – постоянный вектор. В итоге получаем задачу на собственные значе-
ния j и вектора vj для матрицы A(ik):

0,=))(( VEA ik (35)
где E – единичная матрица.

Система (35) разрешима, если ее детерминант равен нулю, то есть

0.|=)(|det=),( EA  ikkD (36)
Вычисление (36) приводит к характеристическому уравнению вида [16]:
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  (37)
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где

,ˆdetˆdet=)( 2
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0 bakAkkF  (38)

.)(= 1111
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2222122121120 babababaA  (39)

Здесь матрицы }{=ˆ ikaa  и }{=ˆ
ikbb  являются минорами матрицы A и определяютсяся

как
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Характеристическое уравнение (37) имеет четыре корня j(k). Два корня в ин-
тересуемом нас случае являются комплексно-сопряженными и два – действитель-
ными. Один из действительных корней уравнения (37) (пусть, например, это будет
1(k)) в некотором интервале значений параметров системы и волновых чисел k
может принимать положительное значение. Тогда в окрестности точки неустойчивости
(  c, 1(k)  0), пренебрегая высшими степенями по , из (37) имеем

,)(=
1

2
0

1 A
kF

u  (41)

где A1 > 0 [16].
Неустойчивось имеет место, если выполняется F0(k2) < 0, как следует из (41),

или c учетом (38) при

0.>ˆdetˆdet2= 1/2
0 ][ baAS  (42)

Для рассматриваемой задачи неравенство (42) имеет вид:
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Численное исследование функции S() в области 1 <  < 0 показывает, что S()
от положительного значения S(0) монотонно убывает и при некотором бифуркаци-
онном значении c меняет знак, то есть в области  < c однородное состояние систе-
мы (30) является неустойчивым.

Значению c соответствует критическое значение волнового числа k = kc, которое
находится из условия F0(k2, c) = 0. В результате получаем ),)/(2(= 2

0
2  cc Ak  чтоо

соответствует характерному пространственному масштабу ckd /2=   или

)./(= 01 rdd (44)

3. Уравнения для параметров порядка

Неоднородные решения нелинейной системы уравнений (30) в окрестности
бифуркационного значения управляющего параметра (  c) будем искать в классе
периодических функций по пространственной переменной x. Для этого решение
системы (30) представим виде [10]:

.}{exp)(=),(
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xikttx j
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j

jk

 Vq (45)

Здесь )(tj
k   – некоторые комплексные неизвестные функции времени t. Сум-

мирование производится по всевозможным значениям волновых чисел k = 2/L
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(n = 0, ±1, ±2, ...), дискретность которых следует из граничных условий (29). Собст-
венные функции матрицы A(ik) удовлетворяют условию ортогональности

.=)(exp1 ][
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kk
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dxxkki
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  (46)

Введем в рассмотрение векторы ,}{= i
j

i wW  ортогональные векторам V j и, со-
ответственно, удовлетворяющие условию

,=),( ij
ji VW (47)

откуда находим компоненты векторов W i. Подставим разложение (45) в систему (30),
скалярно умножим на W j и используем (46). В результате для функций )(tj

k   по-
лучим систему уравнений:
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Поскольку нелинейные функции Ns квадратичны по qj, то их можно представить
в форме
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s qqCN  (49)

где матрицы 
s
nmC  определяются из (25)–(28).

С учетом (49) и разложения (45) система уравнений (48) принимает вид:
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Обратимся к исследованию системы уравнений (50). В рассматриваемом случае,
поскольку собственные значения для неустойчивой моды (параметра порядка)
действительны, можно воспользоваться адиабатическим приближением [10], которое
основано на различии временных масштабов поведения мод. Идея адиабатического
приближения заключается в том, что вблизи точки «фазового перехода» времена
релаксации незатухающих мод стремятся к бесконечности, поэтому затухающие моды
адиабатически следуют за незатухающими и скорость их изменения определяется
именно этими модами. Предположим, что одна из мод u = kc становится неустой-
чивой (это достигается при  < c) с инкрементом u = kc > 0. Для остальных мод
при этом выполняются условия
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j
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Разобьем систему (50) на подсистемы неустойчивых и устойчивых мод. Получим
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Используя принцип адиабатического исключения затухающих мод [10] и полагая
в (54) левую часть равной нулю, алгебраически выразим затухающие моды через u.
В итоге приходим к уравнению для параметра порядка:
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где

./2)1,(1)(2,= 2
111

1
1
1

4

1=
][ j

j
ij

j
GGGG  (56)

В случае если величина G имеет положительное значение, то стационарное
неоднородное решение уравнения (55) устойчиво и реализуется в режиме «мягкого»
возбуждения. В противном случае (G < 0) необходим учет высших членов по u,
возникающих в уравнениях для параметров порядка при рассмотрении динамики
затухающих мод 

j
n  (n > 2). В этом случае стационарная структура зарождается при

достижении точки бифуркации с конечной амплитудой («жесткий» режим воз-
буждения). Рассмотрим случай G > 0.

Переменная u в общем случае – комплексная величина, то есть u = |u  |
exp (i). Подставляя последнее выражение для u в (55), получим дифференци-
альные уравнения для |u  | и . Нетрудно показать, что уравнение для фазы 0,=
то есть  = const. Без ограничения общности положим  = 0, тогда  u = |u  | яв-
ляется действительной величиной и уравнение (55) запишется в виде
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t



 (57)

Умножим это уравнение на 2u и сделаем замену ,= 2
u  тогда (57) сведется к

логистическому уравнению
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t u (58)

решение которого хорошо известно [10]. С учетом этого решения и замены перемен-
ной  =u  получим решение уравнения (57):
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которое аcсимптотически стремится к стационарному решению (C = const)

.)(/= 1/2 cuu G (60)
Бифуркационная диаграмма стационарных решений для исходной системы урав-

нений показана на рис. 1.

Рис. 1. Диаграмма решений системы уравнений (7)–(10) в зависимости от параметра 

u

c

a                               b                                 c
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На рисунке обозначено: a – область однородного решения для подвижных дисло-
каций; b – область однородного решения для двух типов дислокаций (0 = (m)–1);
c – область пространственно-неоднородных периодических решений c характерным
увеличением амплитуды структуры u  (c – )1/2.

Общее решение в этом случае, согласно разложению (45), принимает вид
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(61)

Тогда для исходных переменных  и I с учетом (23) стационарное решение запишется
в виде:

,]sin)([1== )(120021 xkggma c  (62)

).(cos)(1== 40021 xkmgaIII c  (63)

Здесь введена общая плотность дислокаций 0 = 01 + 02 и учтено, что m = 02 /01.
Кроме того, введены параметры
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Заключение

Экспериментальные данные показывают, что ячеистая дислокационная структура
наблюдается на второй и третьей стадиях пластической деформации при умеренных
и низких температурах. Вначале стенки ячеек имеют рыхлую структуру и содержат
одинаковое число дислокаций разного знака [20], но с ростом деформации ячейки
становятся все более разориентированными [15, 20]. Форма ячеек, как правило, не
имеет правильных очертаний. В зависимости от того или иного эксперимента ее
можно интерпретировать как полосовую, ромбическую, гексагональную и другой
формы. При этом характерный размер ячеек практически не зависит от формы ячеек.

Рассмотрим формирование, например, ромбической структуры в кристалле с
гранецентрированной решеткой (ГЦК-кристал). Известно, что металлы с гранецентри-
рованной решеткой деформируются в первую очередь по плотноупакованным плос-
костям {111} в направлениях <110>. Предположим, что кристалл ориентирован таким
образом, что в процессе пластической деформации участвуют две системы скольже-
ния [110] и [011] в плоскости (11–1).

Тогда для общей плотности дислокаций  = [110] + [011] и избыточной I =
= I[110] + I[011] в плоскости (11–1) будет сформирована ромбическая структура
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вытекающая из решений (62), (63), Imax = 20a0(1 + mg4).
Изображение ячеистой структуры, соответствующее формулам (65) и (66), пока-

зано на рис. 2, где а – для суммарной плотности дислокаций, б – аналогичная структу-
ра со смещением на четверть периода d для избыточной плотности дислокаций.
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Изображенная структура представляет собой плоское образование, поскольку
ячейки лежат в плоскости .1)1(1  Такая структура часто называется «слоистой» яче-
истой структурой [6, 7].

Рассмотрим возможный механизм образования субграниц в ячеистой структуре.
По мере увеличения деформации в максимумах избыточной плотности дислокаций
Imax дислокационной структуры достигается критическая плотность дислокаций опре-
деленного знака. Это приводит к вытеснению краевых дислокаций из своей плоскости
скольжения за счет переползания. При этом дислокации формируют устойчивую
конфигурацию (стенку), расположенную в плоскости, перпендикулярной плоскости
скольжения [17]. Так возникает разориентированная ячеистая структура, обуслов-
ленная формированием динамических ячеек с избыточной плотностью дислокаций.
Предполагается в дальнейшем этот механизм рассмотреть специально.
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The issue of the origin and formation of dislocated cellular disoriented structures is investigated
on the basis of the proposed evolutionary model. The model is a system of material balance
equations for two types of dislocations. Accordingly, mobile dislocations and dislocations in
a bound state (sedentary). It is assumed that dislocations move under the action of an applied
external voltage in opposite directions at a constant speed. We neglect the long-range stress
of dislocations, but we take into account their local interaction, namely: reproduction,
immobilization, recombination and runoff of dislocations. The model as a whole represents a
system of four partial differential equations with complex generation-recombination dynamics.
The initial system is transformed to a system for total and excess dislocation density, and
possible homogeneous stationary states are found for the new variables. There are two of
them: the first is only mobile, the second is mobile and sedentary dislocations for their total
density. The excess density in both states is zero. A control parameter of the system is introduced
that characterizes the volume fraction of the substructure on which dislocation runoff occurs,
decreasing with in-creasing deformation. Next, a linear and nonlinear analysis of the system is
performed. It is established that as the control parameter decreases, the solutions of the system

* The Russian Science Foundation supported this work, project No 25-29-20300.
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reflected in the bifurcation diagram form three regions. In the first region, the homogeneous
state is stable only for mobile dislocations. In the second domain, a uniform solution is stable
for both types of dislocations. In the third area, a spatially inhomogeneous periodic solution
for total and excess dislocation density becomes stable, as shown by nonlinear analysis,
which characterizes the properties of the cellular structure.

Keywords: plastic deformation of metals, instability of deformation, self-organization, dissipative
structures, cellular dislocation disoriented structure, walls.


