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Рассмотрены природа и форма связи плотности подвижных дислокаций
с пластической деформацией в ходе пластического течения на разных стадиях
закона деформационного упрочнения металлов. Установлена принципиаль-
ная возможность построения такой функции связи и найдена ее форма на
основе автоволновых представлений о зависимостях длины автоволны лока-
лизованной пластичности и скорости ее распространения от деформации,
соответствующих закономерностям развития многостадийного пластиче-
ского течения в твердых телах разной природы. В основе автоволнового ме-
ханизма пластической деформации лежит идея о важной роли пространствен-
ной локализации пластического течения и о генерации в его ходе самовоз-
буждающихся автоволновых процессов деформации, указывающих на само-
организацию дефектной структуры пластически деформируемой активной
среды с дислокациями и дислокационными ансамблями. Предложен и об-
сужден принцип взаимной дополнительности дислокационного и автовол-
нового подходов к проблеме пластичности твердых тел и рассмотрено согла-
сование соответствующих моделей на основе анализа макроскопических
автоволновых картин локализации пластического течения. Показано, что
как автоволновая картина в виде подвижных и стационарных очагов лока-
лизованной деформации на площадке текучести и на стадиях деформацион-
ного упрочнения, так и дислокационные ансамбли, возникающие на этих
же стадиях процесса течения, закономерно и строго согласованно меняются
в ходе пластического течения. Проведено качественное и количественное
сравнение автоволновых макромасштабных характерных данных о локализа-
ции пластического течения, наблюдаемых in situ с помощью метода спекл-
фотографии, с микроскопическими размерами дислокационных ансамблей,
возникающих в среде при тех же условиях деформирования и выявляемых
акустическим методом по малым изменениям скорости распространения
волн Рэлея. Главная трудность поиска решения поставленных задач состоит
в огромной разнице пространственных характеристик связанных взаимно
структур микроскопического и макроскопического плана, которая может
доходить в ряде случаев до 6-7 порядков.

Ключевые слова: деформация, упрочнение, пластичность, дислокации,
автоволны, активная среда.
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Введение

Изучение природы стадийности пластического течения является одной из наиболее
сложных проблем дислокационной теории пластичности [1]. Первые попытки ее ре-
шения связаны с исследованиями А. Зегера и его учеников [2], применивших теорию
дислокаций для объяснения природы механизмов, контролирующих стадии дефор-
мационного упрочнения гранецентрированных кубических (ГЦК) монокристаллов.
Стадии деформационного упрочнения выделяются по зависимостям коэффициента
деформационного упрочнения от деформации d/d = () на кривых пластического
течения (), где  – деформирующее напряжение и  – деформация. К сожалению,
несмотря на сохраняющийся интерес к проблеме стадийности пластического течения
[1, 3–5], полное ее постижение, как и универсальное расширение решения Зегера на
объемно-центрированные кубические (ОЦК) и гексагональные плотноупакованные
(ГПУ) монокристаллы и поликристаллы, до сих пор отсутствуют. Причину этого не-
сложно понять, если обратиться к уравнению кинетики дислокационной деформации
Тейлора – Орована [1]

,dislmdVb
dt
d


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которое связывает макроскопическую скорость пластической деформации  dtd /
   с микроскопическими характеристиками дислокационной структуры: векторомм

Бюргерса дислокаций b, зависимостью скорости движения дислокаций от приложен-
ного напряжения Vdisl() и зависимостью плотности подвижных дислокаций от де-
формации md().

Сложность природы и вида последней функции подчеркивал еще Дж. Гилман
[6], первым рассмотревший проблему и предсказавший немонотонную форму за-
висимости
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В соотношении (2) 0 – начальная плотность дислокаций, а m – коэффициент размно-
жения дислокаций. Неопределенность физической интерпретации последней величины
осложняет использование соотношения (2). В настоящей статье предпринимается
попытка выяснить характер зависимости md() на базе развиваемых автоволновых
представлений о природе пластичности [7, 8].

Автоволновой подход и уравнение
для плотности подвижных дислокаций

Для анализа поставленной задачи существенны некоторые детали автоволнового
подхода. Эксперименты, проведенные на материалах различной природы, показали,
что пластическое течение всегда протекает макроскопически локализованно. Визуали-
зированная пространственно-временная картина локализации, которую принято на-
зывать паттерном локализованной пластичности [7, 8] (рис. 1а), интерпретируется
как автоволна локализованной пластичности, причем каждой стадии деформационного
упрочнения отвечает определенная автоволновая мода (правило соответствия [7]).
Форма зависимости md() (рис. 1б) важна для автоволновой физики пластичности,
так как автоволновые процессы порождаются активной средой, содержащей распре-
деленные в объеме источники потенциальной энергии – концентраторы напряже-
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ний [7, 8]. Цифрами на рисунке обозначены: 1 – кривая на стадии I ( ~ 0), 2 –
кривая на стадии II ( ~ ), 3 – кривая на стадии III ( ~ 1/2) деформационного уп-
рочнения [7].

Понятие активной среды и ее наиболее важные характеристики связаны с дис-
локационной структурой деформируемого материала, то есть с формой зависимости
md(). Понимание природы взаимосвязи этой зависимости и закономерностей
автоволнового механизма пластичности [7, 8] является необходимым условием раз-
вития автоволновых представлений о природе пластичности, так что целесообразно
рассмотреть проблему, акцентируя внимание на стадийности процесса пластического
течения.

Преследуя эту цель, воспользуемся основными положениями автоволновой те-
ории пластичности [7, 8], согласно которым скорость пластической деформации опи-
сывается реакционно-диффузионным дифференциальным уравнением
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В теории автоволн [9] нелинейную функцию f () в уравнении (3) принято назы-
вать точечной кинетикой. Она обычно имеет N-образную форму и в случае пласти-
ческого течения описывает локальную скорость деформации в ходе элементарно-
го релаксационного акта [10]. Как показано в [7], при малых деформациях функция
f () совпадает с правой частью уравнения Тейлора – Орована (1), то есть  f () =
= bmdVdisl. Генерация автоволн локализации пластического течения при больших
деформациях и, соответственно, при больших плотностях дислокаций контролируется
диффузионно-подобным членом D уравнения (3) [7].

Используя анализ размерностей, транспортный коэффициент D можно предста-
вить [7] либо произведением длины автоволны локализованной пластичности ()
на скорость ее распространения Vaw(), то есть в виде D ()Vaw(), либо времен-
ной производной D = d–1

md/dt. В результате имеем дифференциальное уравнение
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которое после замены переменной εε/ddt   при условии constε  дает

)(λ(ε)
ρ
1

ε
ε aw

md









V

d
d

 (5)

100

200

300

, МПа

0             0,1         0,2          0,3           

1

2

3
y,

 м
м

x, мм

y,
 м

м

y,
 м

м

x, мм

x, мм

а)
Рис. 1. Кривая пластического течения и паттерн локализованной пластичности
для сплава Fe-0,1 мaс.%C (а); зависимость плотности подвижных дислокаций

от деформации (схема) и зависимость () (б)
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Окончательно для плотности подвижных дислокаций md() получаем
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Из уравнения (8) следует, что искомую функцию md() при постоянной скорости
деформации определяет функционал ε,)()(λ)( aw dV   поведение которого,  в
свою очередь, контролируется зависимостями автоволновых характеристик дефор-
мируемого материала от деформации () и Vaw(), изученными ранее [7, 8]. Полу-
ченные результаты можно использовать, имея ввиду, что, согласно принципу соот-
ветствия, каждой стадии деформационного упрочнения отвечает автоволновая мода
со строго определенными формами зависимостей  () и Vaw(). Это позволяет ис-
кать решения уравнения (8) для функции md(), отвечающие последовательно раз-
вивающимся стадии деформации Людерса и стадиям II, III деформационного
упрочнения.

Решения для разных стадий пластического течения

Деформация Людерса ( ~ 0). Стадии I пластического течения отвечает пло-
щадка текучести, на которой в деформируемой среде совершается упругопласти-
ческий переход, то есть появляются подвижные дислокации. Переход может рассмат-
риваться как автоволна переключения [9], на фронте которой плотность подвижных
дислокаций скачком возрастает из-за освобождения от локальных стопоров [10, 11],
так что в упругой области перед фронтом md = 0, а в пластически деформированной
части позади фронта md  0. Фронт перехода (фронт Людерса) движется в направ-
лении оси растяжения со скоростью Vaw = VL  const. В качестве величины () в
функционале ε)ε()ε(λ)ε( aw dV  можно рассматривать расстояние между движу-
щимися навстречу друг другу фронтами Людерса двух разных полос, полагая, что
 ~ –2. Выбор квадратичной функции оправдан требованием, чтобы при любом при-
ращении деформации изменение длины автоволны имело один знак, так как, зародив-
шись, фронты Людерса могут двигаться только в одну сторону. Тогда 1~)(  d
и функционал определяется выражением

.ε~)ε(λε)ε()ε(λ)ε( 1
Law

  dVdV
Следовательно, плотность подвижных дислокаций на стадии деформации Людерса

.~)()L( md (9)
Физический смысл соотношения (9) состоит в том, что при упругопластическом

переходе число подвижных дислокаций непрерывно растет вместе с перемещением
фронта Людерса, то есть пропорционально , в то время как общий объем образца
при пластической деформации на площадке текучести почти не изменяется.
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Стадия II ( ~ ). На этой стадии процесса пластического течения длина и ско-
рость распространения автоволны не зависят от деформации, то есть () = const и
Vaw() = const [7]. В деформируемой таким образом среде возникает фазовая
автоволна, для которой x/ – t/T = const. В таком случае

const,)]()([)( 0aw0aw   VdV (10)

так что форма зависимости плотности подвижных дислокаций от деформации на
стадии линейного деформационного упрочнения остается постоянной. Она может
быть описана функцией [12]

,
)ε2(exp1

ρ)ε(ρ 0)lwh(
md k
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где k – постоянный коэффициент.
Стадия III ( ~ 1/2). На этой стадии по-прежнему () = const, но Vaw() = 0 [7].

При этом фазовая автоволна сменяется стационарной диссипативной структурой [9].
Условие Vaw() = 0 заставляет вводить эффективную скорость ,λ/χω 2

D
)eff(

aw V  где
 – межплоскостное расстояние, а D – частота Дебая [7]. Скорость )eff(

awV  учиты-
вает рост пластической деформации, не связанный с движением фронтов плас-
тичности. На стадии III  ~ 1/2 [2, 11], а  = d/d ~ ––3/2. В таком случае ~(eff)

awV
~–1 ~ –3/2, и функционал принимает вид
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Условие ,const  соответствующее уравнению Тейлора – Орована (1), может
реализоваться, если плотность подвижных дислокаций спадает с деформацией по
закону
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md
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Этот спад соответствует заполнению кристалла дислокациями при поперечном
скольжении, характерном для стадии III деформационного упрочнения [1, 2]. Он
является более медленным по сравнению с формулой (2), но качественно согласуется
с ней.

Наличие коэффициента 0 в уравнениях (11) и (13)позволяет «сшить» решения
для стадий деформационного упрочения II и III, записав
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или )( **1/2 2exp1ε  k  для граничной между стадиями II и III деформационного
упрочнения деформации *. Тогда –2k* = ln (*1/2 –1) и
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то есть при типичном значении граничной деформации * ~ 10–1 коэффициент k  1,6.
Если вспомнить, что на стадии III деформационного упрочнения  ~ 1/2 [1], то
оказывается, что k ~ –1.

Таким образом, графическое обобщение полученных решений, представленное
на рис. 1б, показывает, что форма зависимости md() согласуется со стадийностью
пластического течения, удовлетворяя при этом правилу соответствия, а ее экстремаль-
ный характер подчеркивает преемственность с формулой Гилмана (2).
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Оценка плотности дислокаций акустическим методом

Для экспериментальной проверки развитых положений были использованы
измерения скорости распространения ультразвука в деформированных металлах. Как
следует из [13, 14], эта величина зависит от плотности дислокаций. С другой стороны,
известно [15], что скорость ультразвука «чувствует» именно подвижные дислокации.
Проверка осуществлена в экспериментах, в ходе которых одновременно с регист-
рацией кривых нагружения регистрировалась скорость распространения ультразвуко-
вых рэлеевских волн с частотой 3 МГц на поликристаллическом чистом алюминии
(содержание Al – не менее 99,5 мас.%). Плотность дислокаций в недеформирован-
ном образце 0  4,6 1013 м–2 оценивалась с помощью анализа профилей брегговских
максимумов [16] на дифрактометре Shimadzu XRD-6000. Плоские образцы с разме-
рами рабочей части 5052 мм, вырезанные вдоль направления прокатки листов,
растягивались на испытательной машине Instron-1185 со скоростью 3,310–4 с–1 при
300 K. Стадии деформационного упрочнения III и предразрушения IV выявлялись
на кривых течения () как прямолинейные участки зависимостей, построенных в
координатах напряжение течения  – деформация 1/2. Скорость распространения
рэлеевских волн определялась как отношение длины пути волны в образце ко времени
задержки прихода сигнала на приемный преобразователь   относительно излучающего
сигнала. Оно измерялось по осциллограмме, записанной с помощью цифрового ос-
циллографа с частотой дискретизации 2 ГГц. Синхронная запись диаграмм растя-
жения () и измерений скорости рэлеевских акустических волн V позволяла полу-
чить зависимости скорости от величины деформации  [15].

Относительное изменение скорости распространения рэлеевских волн V/V0,
где V0 – скорость в недеформированном состоянии, а V = V0 – V – разность ско-
ростей в исходном и деформируемом состоянии, связано с изменением плотности
дислокаций при пластической деформации  = tot – 0. Изменение плотности
дислокаций  было найдено из условия равенства приложенных напряжений и
внутренних напряжений, создаваемых дислокациями .2/1

tot Gbi
В соответствии со статьей [13]

,
0V
V

 (16)

где коэффициент 224 /608/5 LL   зависит от длины дислокационного сегмен-
та L. Ее можно оценить по напряжению, вызывающему работу источника Франка –
Рида, как ,)1/(2/3 LGbr   где  = 0,34 – коэффициент Пуассона, G = 26 ГПа –
модуль сдвига [17]. Тогда L = 315b (b = 0,286 нм – длина вектора Бюргерса дислока-
ций в Al). При значениях L < 315b напряжения r > B (B = 62 МПа – предел
прочности Al при 300 К).

Оцененный таким образом коэффициент   7,51015 м–2, а рассчитанные из-
менения полной плотности дислокаций tot с ростом общей деформации Al показа-
ны на рис. 2а. При деформации в алюминии формируются дислокационные ячей-
ки, разделенные дислокационными стенками. Полная плотность дислокаций tot
есть сумма плотностей подвижных и неподвижных дислокаций, сосредоточенных
внутри и в границах ячеек. Плотность дислокаций в границах дислокационных яче-
ек c (см. рис. 2а) увеличивается с ростом деформации в соответствии с законом
[18–20]



464

,
2

exp1)(
2

2

2

2

1














 








 kM

bk
k

c (17)

где k1 и k2 – коэффициенты, характеризующие размножение и аннигиляцию дисло-
каций, численные значения которых для Al взяты из [21]; M – ориентационный фак-
тор Тейлора [1].

Поведение плотности подвижных дислокаций md = tot – c в зависимости от
деформации показано на рис. 2а, где 1 – диаграмма растяжения, 2 – изменение
плотности tot, 3 – плотности c, 4 – плотности md. Полученные значения согласу-
ются с литературными данными [18–20, 22–26]. Вводя длину свободного пробега
дислокаций 

21)(  md  и скорость движения дислокаций Vdisl() = /, можно про-
следить за экстремальным поведением их произведения D  ()Vdisl(), приведен-
ным на рис. 2б и указывающим на существенные вариации коэффициента D, с ко-
торыми связаны изменения автоволновых мод при развитии деформационного уп-
рочнения.

Заключение

Показано, что использование автоволновых представлений о характере развития
пластического течения в твердых телах оказывается продуктивным при решении
задачи о форме функции плотности подвижных дислокаций от деформации. Связь
установленной зависимости со стадийностью кривой деформации и автоволновыми
модами пластического течения позволяет считать ее физически более обоснованной.

Проведенное исследование показывает, что установленные зависимости могут
быть пригодны для расчетов деформационной кинетики при построении физики
пластичности при оценке такой характеристики материала, как плотность подвижных
дислокаций непосредственно в процессе нагружения. Очевидно, что в соответствии
с уравнением (16) для этого достаточно точно определить малое изменение скорости
распространения ультразвука, вызванное пластической деформацией.

Результаты экспериментального исследования плотности дислокаций в деформи-
рованном алюминии указывают на качественное согласие полученных эксперимен-
тальных и теоретических данных. Это позволяет переносить характерные дислокацион-
ные модели на металлы, на кривых течения которых имеются стадии деформационно-
го упрочнения I ( ~ 0) и II ( ~ ).

Рис. 2. Диаграмма растяжения и изменение плотностей дислокаций
с ростом деформации (а); зависимость коэффициента D в уравнении (3)

от деформации для стадий III и IV (б)
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The nature and form of the relationship between the density of mobile dislocations and plastic
deformation during the development of plastic flow at different stages of the stress-strain
curve of metals are considered. The possibility of constructing such a relationship function
based on autowave concepts of the dependences of the autowave length of localized plasticity
and the velocity of its propagation on deformation, corresponding to the laws of multi-stage
plastic flow in solids, is demonstrated. The autowave mechanism is based on the concepts of
the leading role of localization of plastic deformation and generation of self-excited autowave

* The study was carried out within the framework of the state assignment of the Institute
of Strength Physics and Materials Science SB RAS; topic No FWRW-2021-0011.
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processes during plastic flow, associated with the self-organization of a plastically deformed
active medium. The principles of mutual complementarity of the dislocation and autowave
approaches to the problem of plasticity of solids and their coordination based on the study of
macroscopic autowave patterns of localization of plastic flow are formulated. Both the autowave
pattern in the form of mobile and stationary foci of localized deformation on the yield plateau,
stages of strain hardening, and dislocation ensembles evolve regularly during plastic flow.
A comparison of autowave macroscale quantitative data on the localization of plastic flow,
recorded using in situ speckle photography, with microscopic characteristics of dislocations
arising in the material under the same deformation conditions, recorded by the acoustic method,
is carried out. The difficulty of solving the problem is that the compared micro- and
macrostructures have fundamentally different spatial scales, differing by 6-7 orders of magnitude.

Keywords: deformation, strengthening, plasticity, dislocations, autowaves, active medium.


