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Проведены комплексные исследования физико-механических свойств
и структуры хромоникелевой аустенитной нержавеющей стали 03Х17Н12М2,
изготовленной по технологии послойного лазерного сплавления. Получены
значения плотности, предела прочности при растяжении, микротвердости,
модуля сдвига, нанотвердости и модуля Юнга, а также результаты исследова-
ния структуры и фазового состава методами растровой электронной микро-
скопии, дифракции отраженных электронов, рентгеновской дифракции при
использовании различных технологических режимов сплавления. В целях со-
поставления полученных данных был использован интегральный параметр –
объемная плотность энергии, то есть энергии, получаемой единицей объема
материала. Результаты испытаний показали, что значения механических
свойств превышают соответствующие характеристики зарубежной стали
аналогичного состава (типа 316L), изготовленной как с использованием тра-
диционных технологий, так и с помощью технологии послойного лазерного
сплавления. Показано, что изменение объемной плотности энергии в рас-
сматриваемом диапазоне 45–130 Дж/мм3 оказывает незначительное влияние
на физико-механические свойства материала. Микроструктурный анализ
также показал крайне слабую зависимость среднего размера зерна и морфо-
логии зерен от объемной плотности энергии. При этом было обнаружено
наличие нелинейных корреляций между значениями объемной плотности
энергии и величиной упругой составляющей при наноиндентировании,
долей малоугловых границ и уровнем остаточных напряжений первого рода.
Полученные результаты указывают на то, что скорость охлаждения при по-
слойном лазерном сплавлении, зависящая от объемной плотности энергии,
оказывает существенное влияние на параметры формирующейся структуры
на микроуровне, такие как тип границ, количество и подвижность дислокаций
и пр., что является важным фактором при эксплуатации материала.

ПРОБЛЕМЫ ПРОЧНОСТИ И ПЛАСТИЧНОСТИ, т. 87, № 4, 2025 г.

* Выполнено в рамках научной программы Национального центра физики и матема-
тики, направление № 8 «Физика изотопов водорода». Этап 2023–2025 гг.



445

Ключевые слова: аддитивные технологии, хромоникелевая аустенитная
сталь 03Х17Н12М2, технология послойного лазерного сплавления, плотность,
прочность, микроструктура.

Введение

Послойное лазерное сплавление (ПЛС) – это одно из основных направлений
развития аддитивных технологий, позволяющих при высоком коэффициенте исполь-
зования материала создавать изделия сложной формы, имеющие физико-механи-
ческие характеристики, не уступающие свойствам изделий, изготовленных с исполь-
зованием традиционных технологий [1–5]. Нержавеющие стали являются широко
распространенным конструкционным материалом благодаря сочетанию эксплуата-
ционных и физико-механических свойств, позволяющим использовать его в самых
разных областях: авиастроении, машиностроении, атомной промышленности, а также
для изготовления медицинских инструментов и изделий [6–8]. Необходимо, однако,
заметить, что данные о свойствах изделий, изготовленных методами аддитивных
технологий из порошков российского производства, по-прежнему достаточно огра-
ниченны [9–12]. В связи с этим целью настоящей статьи являются комплексные ис-
следования физико-механических свойств и структуры хромоникелевой аустенит-
ной нержавеющей стали 03Х17Н12М2, изготовленной методом ПЛС.

1. Методика получения образцов и исследования свойств и структуры

Объект исследований – хромоникелевая аустенитная сталь марки 03Х17Н12М2,
полученная методом ПЛС из сферического порошка фракции 20–45 мкм (произво-
дитель АО «ПОЛЕМА», Россия) на установке Chamlion M2150T (Китайская Народ-
ная Республика). Частицы порошка имеют сферическую форму со средним разме-
ром 32 мкм. Химический состав порошка соответствует сертификату производителя,
% мас.: Cr 18,2%; Mn 1,8%; Fe 65,0%; Ni 11,5%; Mo 2,4%.

Для исследования физико-механических свойств хромоникелевой аустенитной
стали 03Х17Н12М2 были изготовлены образцы различных типов (рис. 1).

Образцы типа 1 (рис. 1а) в форме куба со стороной 9 мм изготовлены для иссле-
дований плотности, твердости, микротвердости и микроструктуры. Плотность из-
мерена методом гиростатического взвешивания на аналитических весах Sartorius
CPA225D. Для исследования микротвердости был использован автоматизированный
твердомер Qness 60A+. Металлографические исследования выполнены на оптиче-
ском микроскопе Leica IM DRM. Структурные исследования с применением методи-
ки дифракции отраженных электронов (EBSD) были проведены с использованием

Рис. 1. 3D-модели образцов для исследований

а)                              б)                                                       в)                                       г)



446

растрового электронного микроскопа TescanVega 2, оснащенного приставкой для
анализа картин дифракции электронов Nordlys 2. Размер участков анализа составлял
9090 мкм, шаг сканирования – 150 нм.

Образцы типа 2 (рис. 1б) в форме двойной лопатки 2510 мм с рабочей частью
223 мм были испытаны на растяжение при комнатной температуре на установке
Tinius Olsen H25K-S с постоянной скоростью деформирования 0,01 мм/с.

Образцы типа 3 (рис. 1в) в форме параллелепипеда 1,51,545 мм изготовлены
для исследования внутреннего трения и модуля сдвига. Исследования проводились
на измерительно-вычислительном комплексе «Крутильный маятник» при частоте
колебаний 3 Гц в диапазоне температур 25–550 °С (скорость нагрева составля-
ла 4 °С/мин).

Образцы типа 4 (рис. 1г) в форме параллелепипеда 10104 мм3 изготовлены
для исследования нанотвердости, модуля Юнга и проведения рентгенофазового
анализа (РФА) для определения фазового состава и оценки напряжений I рода. Для
проведения наноиндентирования использовался зондовый комплекс для измерений
механических параметров методом непрерывного вдавливания Nano Indenter G200
«Agilent»: алмазный индентор Берковича, глубина наноиндентирования 1 мкм, ско-
рость деформации 0,05 с–1, показатель гармонического смещения 2 нм, частота коле-
баний индентора в режиме CSM 45 Гц. Рентгенодифракционные исследования фа-
зового состава образцов осуществлялись на дифрактометре Haoyuan DX-2700BH
по схеме Брэгга – Брентано. Исследования проводились в излучении K линии ха-
рактеристического рентгеновского спектра кобальта с длиной волны 1,79 A° в режиме
работы рентгеновской трубки 30 кВ/30 мА. Дифрактограммы образцов для фазового
анализа были получены в диапазоне углов 2 = 15–140° с шагом 0,1° по углу 2 и
с временем экспозиции 5 с.

2. Результаты экспериментальных исследований

Для исследования процесса ПЛС с целью оптимизации параметров сплавления
были изготовлены образцы с использованием различных технологических режи-
мов. Для сравнения полученных результатов принято использовать интегральный
параметр – объемную плотность энергии (ОПЭ) [3, 13, 14], которая представляет
собой количество энергии, получаемой единицей объема материала при ПЛС-
процессе:

,ОПЭ
vds
p



где p – мощность лазера, v – скорость сканирования, d – толщина слоя, s – расстояние
между дорожками сканирования.

Для исключения влияния факторов, связанных с совпадением траекторий луча
лазера при переходе между слоями [15, 16], был использован угол поворота штрихов-
ки 67°. Температура платформы установки поддерживалась постоянной и составля-
ла 150 °С. Образцы отделялись от платформы электроэрозионной резкой. Все манипу-
ляции с порошком (просеивание в вибросите, сушка в термокамере и др.) и процесс
ПЛС реализовывались в среде высокочистого аргона (99,998 мас.%).

На рис. 2–5 приведены зависимости плотности, предела прочности, микротвер-
дости и модуля сдвига ПЛС-образцов 03Х17Н12М2 от величины ОПЭ. Из рис. 2 вид-
но, что увеличение ОПЭ от 45 до 60 Дж/мм3 приводит к увеличению плотности от
7,76 до 7,94 г/см3. Дальнейшее увеличение ОПЭ до 130 Дж/мм3 не приводит к из-
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менению плотности. Влияние ОПЭ на величину предела прочности незначительное:
предел прочности составляет около 700 МПа, что находится в пределах случайного
разброса измерений при варьировании ОПЭ в диапазоне 45–130 Дж/мм3 (рис. 3).

 Полученные значения предела прочности соответствуют характеристикам анало-
га – ПЛС-стали 316L и превосходят показатели для марки стали, произведенной по

40            60            80           100          120          140
Объемная плотность энергии, Дж/мм3

7,75

7,85

7,95
П

ло
тн

ос
ть

, г
/с

м3

Рис. 2. Зависимость плотности ПЛС-образцов стали 03Х17Н12М2
от объемной плотности энергии
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Рис. 3. Зависимость предела прочности ПЛС-образцов стали 03Х17Н12М2
от объемной плотности энергии

Рис. 4. Зависимость микротвердости ПЛС-образцов стали 03Х17Н12М2
от объемной плотности энергии
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Рис. 5. Зависимость модуля сдвига ПЛС-образцов стали 03Х17Н12М2
от объемной плотности энергии
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традиционной технологии [13, 17–19]. Величины микротвердости и модуля сдви-
га не претерпевают существенных изменений при варьировании ОПЭ: величина
микротвердости во всем диапазоне составляет 2,55 ГПа, величина модуля сдвига –
65 ГПа.

На рис. 6 представлена рентгеновская дифрактограмма исходного порошка
03Х17Н12М2. В порошке обнаружены рентгенодифракционные максимумы двух
фаз – аустенит (PDF-4 №04-008-8475), отвечающий пространственной группе
симметрии Fm-3m, и феррит (PDF-4 №04-007-9753), отвечающий пространственной
группе симметрии Im-3m. Проведены исследования влияния ОПЭ в диапазоне 45–
130 Дж/мм3 на фазовый состав ПЛС-образцов. Показано, что фазовый состав не
зависит от ОПЭ, во всех ПЛС-образцах стали 03Х17Н12М2 обнаружены рентгено-
дифракционные максимумы одной фазы – аустенит (PDF-4 №04-008-8475), отвеча-
ющий пространственной группе симметрии Fm-3m. Рентгенодифракционные
максимумы фазы феррита в ПЛС-образцах не обнаружены.

На рис. 7 приведены характерные изображения структуры ПЛС-образцов,
полученные методом растровой электронной микроскопии с различными значениями
ОПЭ: а) 45 Дж/мм3, б) 65 Дж/мм3, в) 130 Дж/мм3. Исследования микроструктуры
проводились в плоскости сканирования лазерного луча (XY-плоскость). Показано,
что во всех исследованных образцах независимо от значения ОПЭ формируется не-
однородная микроструктура, характерная для условий быстрого затвердевания.
Микроструктура состоит из субзерен (ячеек) двух основных типов: округлых и вытя-
нутых с размером 6–12 мкм. Однако при использовании ОПЭ 130 Дж/мм3 наблюда-
ется более хаотичная и изотропная микроструктура (рис. 7в). Субзерна имеют пре-
имущественно округлую или слегка вытянутую форму, а их расположение не демон-
стрирует ярко выраженной направленности, как при использовании других значений.

На рис. 8 представлены результаты EBSD-анализа ПЛС- образцов при различных
значениях ОПЭ: а) 45 Дж/мм3, б) 65 Дж/мм3, в) 130 Дж/мм3. Кристаллографическая
ориентация отдельных зерен закодирована в цветах обратной полюсной фигуры, по-
строенной для направления Z, которое совпадает с нормалью к плоскости шлифа.
Соответствующая цветовая кодировка кристаллографических ориентаций приведена
на рис. 8в: большеугловые границы зерен (БУГ) – границы с углом разориентировки,
превышающим 15°, показаны черными линиями, малоугловые (МУГ) – границы с
углом разориентировки от 1 до 15° – белыми.  Анализ представленных изображений

Рис. 6. Рентгеновская дифрактограмма исходного порошка
и ПЛС-образцов 03Х17Н12М2, изготовленных при различных значениях ОПЭ
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позволяет сделать вывод, что во всех образцах наблюдается неоднородная зеренная
структура, типичная для материалов, изготавливаемых методом ПЛС.

Рис. 8. EBSD-карты ПЛС-образцов 03Х17Н12М2 в цветах обратной полюсной фигуры

25m 25m

а) б)

в)

[001] [011]

[111]

а) б)

Рис. 7. Микроструктура ПЛС-образцов 03Х17Н12М2,
изготовленных с использованием различных значений ОПЭ

в)
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Зерна характеризуются широким распределением по размерам (от субмикронных
до десятков микрометров). Анализ спектров разориентировок границ показал, что
все исследованные материалы характеризуются высокой долей МУГ.

На рис. 9 приведены зависимости нанотвердости и модуля Юнга ПЛС-образцов
03Х17Н12М2 от величины объемной плотности энергии. Показано, что модуль Юн-
га составляет 195 ГПа и в пределах погрешности не зависит от ОПЭ в диапазоне
45–130 Дж/мм3, а величина нанотвердости незначительно уменьшается от 3,4 до
3,1 ГПа при увеличении ОПЭ от 45 до 130 Дж/мм3.

На рис. 10 для ПЛС-образцов стали 03Х17Н12М2 представлены зависимости
доли упругой деформации в отпечатке при наноиндентировании, доли МУГ и
величины остаточных напряжений I рода от ОПЭ, которые демонстрируют сложный
нелинейный характер.

Основными экспериментальными данными, получаемыми при наноинден-
тировании, служат кривые усилие – глубина внедрения (F–h). В процессе нагружения
полная деформация материала представляет собой сумму пластической и упругой

Нанотвердость
Модуль Юнга

Объемная плотность энергии, Дж/мм3

30            50           70            90           110           130
2,7

3,1

2,9

3,3

3,5

3,7

Н
ан

от
ве

рд
ос

ть
, Г

П
а

180

190

200

210

220

М
од

ул
ь 

Ю
нг

а,
 Г

П
а

Рис. 9. Зависимость нанотвердости и модуля Юнга ПЛС-образцов стали 03Х17Н12М2
от объемной плотности энергии

Рис. 10. Зависимость доли упругой деформации, доли МУГ зерен
и величины остаточных напряжений I рода от ОПЭ
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составляющих. Для количественной оценки доли пластической деформации p  ис-
пользуется соотношение: p  = Wp /(Wp + We)100%, где Wp и We – работа пласти-
ческой и упругой деформации соответственно, численно равная площади под соответ-
ствующими участками кривой F–h. Доля упругой деформации при этом будет
составлять e = 1 – p. Параллельно оценены остаточные напряжения I рода с
помощью РФА с использованием приставки Эйлера, позволяющей производить
повороты образца вокруг трех осей. Расчет остаточных напряжений выполнен в
приближении плоского напряженного состояния, которое выявило наличие растягива-
ющих напряжений в плоскости XY (плоскость, перпендикулярная оси луча лазера).
Кроме того, по данным анализа спектров разориентировок (см. рис. 8) была оценена
доля МУГ.

3. Анализ и обсуждение результатов

В эксперименте показано, что изменение объемной плотности энергии в широком
диапазоне 45–130 Дж/мм3 не приводит к существенному изменению основных
физико-механических характеристик – плотности, предела прочности, модуля Юнга
и модуля сдвига. Структурные исследования также показали крайне слабую зави-
симость среднего размера зерна и морфологии зерен от ОПЭ. Рентгеноструктурные
исследования свидетельствуют о наличии единственной фазы (аустенит) во всех
образцах в независимости от значений ОПЭ.

В свою очередь, нелинейное поведение величины доли упругой деформации,
доли МУГ и остаточных напряжений I рода (см. рис. 10) в зависимости от объемной
плотности энергии в нержавеющей стали 03Х17Н12М2, полученной методом ПЛС,
может быть связано с конкуренцией процесса генерации дислокаций при быстром
охлаждении и процессов, происходящих при повышенных температурах (возврат,
полигонизация, рекристаллизация). При изготовлении ПЛС-образцов изменение ОПЭ
главным образом было связано с изменением скорости сканирования. Известно,
что увеличение скорости сканирования при ПЛС приводит к увеличению скорости
охлаждения [20, 21]. Таким образом, можно считать, что низким значениям ОПЭ
соответствует высокая скорость охлаждения и малое количество переданной тепловой
энергии и, наоборот, высоким значениям ОПЭ соответствует низкая скорость ох-
лаждения и большое количество переданной тепловой энергии. Известно, что процесс
ПЛС характеризуется экстремально высокими скоростями нагрева и охлаждения,
вплоть до 105 °С/с [22, 23]. Это приводит к возникновению значительных термических
напряжений, которые могут релаксировать за счет интенсивного пластического де-
формирования, обусловленного активным размножением и движением дислокаций.

При низком значении ОПЭ 45 Дж/мм3 («высокая» скорость охлаждения и «малое
количество» энергии) количество дислокаций наибольшее, однако дислокации из-
за ограниченного времени не успевают перестроиться в стабильные субграницы.
Вместо этого может формироваться более хаотичная дислокационная субструктура.
В связи с этим доля МУГ и доля упругой деформации будут незначительными (см.
рис. 10), а хаотичная структура с дефектами, не образующими дислокационные
стенки/барьеры, менее эффективно препятствует движению дислокаций. Как было
отмечено, при ПЛС генерируются значительные термоупругие напряжения, однако
релаксационные процессы не успевают пройти путем пластической деформации, по-
этому напряжения I рода сохраняются на высоком уровне.
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При среднем значении ОПЭ 65 Дж/мм3 («средняя» скорость охлаждения и «сред-
нее количество» энергии) дислокации успевают перестроиться, формируя ячеистые
структуры и малоугловые границы (поэтому доля МУГ наибольшая), при этом высо-
кая плотность МУГ создает мощные барьеры для движения дислокаций, материал
демонстрирует упругое поведение, поэтому доля упругой деформации наибольшая
(см. рис. 10). В свою очередь, процесс полигонизации является мощным механизмом
релаксации внутренних напряжений I рода (наблюдается минимальное значение этих
напряжений на рис. 10). Несмотря на то, что в этом режиме доля МУГ наибольшая,
поля напряжений от них короткодействующие, и они не оказывают существенного
влияния на напряжения I рода. Возможно, в этом случае следует ожидать роста на-
пряжений II рода, обладающих более локализованным характером.

Повышение ОПЭ до 130 Дж/мм3 («низкая» скорость охлаждения и «большое
количество» энергии) приводит, во-первых, к уменьшению количества возникающих
при кристаллизации дислокаций (по сравнению с низкими значениями ОПЭ), во-
вторых, из-за «перегрева» материала происходят более интенсивные процессы
возврата и аннигиляции дислокаций – доля МУГ имеет более низкие значения  по
сравнению с ОПЭ 65 Дж/мм3 (см. рис. 10). Снижение плотности МУГ, в свою
очередь, приведет к снижению доли упругой деформации при наноиндентировании.

При увеличении ОПЭ до 130 Дж/мм3 несколько слоев материала переплавляется
многократно, вызывая большое количество циклов «нагрев/охлаждение», что
приводит к существенному росту остаточных напряжений. В таблице 1 для наглядности
приведены сводные результаты исследования влияния ОПЭ на долю упругой
деформации при наноиндентировании, долю МУГ зерен и остаточные напряжения I
рода.

Таблица 1
Влияние ОПЭ на процессы структурообразования ПЛС

(количественные и качественные характеристики)

ОПЭ, Тепловая Скорость
Доминирующий  Доля упругой Доля Напряже-

Дж/мм3  энергия охлаждения структурный деформации, % МУГ, % ние y,
процесс МПа
Стадия

45 Низкая Высокая формирования 9 72 155
неравновесной (низк.) (низк.) (средн.)

структуры

65 Средняя Средняя Полигонизация 12 76 90
(макс.) (макс.) (низк)

Начальные
8 71 245130 Высокая Низкая стадии (низк.) (низк.) (макс.)рекристаллиз.

Таким образом, варьирование ОПЭ в процессе ПЛС не оказывает существенного
влияния на физико-механические свойства (плотность, предел прочности, упругие
модули) и фазовый состав, при этом кардинально меняет дефектную субструктуру
материала. Традиционных методов анализа структуры (размер зерна, фазовый состав)
оказывается недостаточно для полной аттестации состояния ПЛС-образцов. Настоящее
исследование демонстрирует, что для всесторонней характеристики материалов,
полученных методом ПЛС, необходим подход, включающий в себя анализ параметров
субструктуры, таких как плотность и распределение дислокаций (через анализ МУГ
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методом EBSD), «локальные» механические свойства (через наноиндентирование с
анализом доли упругой деформации), величина остаточных напряжений I рода. Со-
вокупность предложенных методов позволяет выявить тонкие структурные изменения,
которые, несмотря на кажущуюся идентичность макроструктуры, будут определять
функциональные и эксплуатационные свойства материала.

Заключение

Проведено комплексное исследование физико-механических свойств хромо-
никелевой аустенитной стали 03Х17Н12М2, изготовленной методом ПЛС, при ис-
пользовании различных режимов сплавления. Показано, что хромоникелевая аус-
тенитная ПЛС-сталь 03Х17Н12М2 имеет высокие показатели физико-механических
характеристик: предел прочности при растяжении 740 МПа, микротвердость 2,5 ГПа,
модуль Юнга 195 ГПа, нанотвердость 3,4 ГПа, плотность 7,94 г/см3. Полученные
значения механических свойств превышают соответствующие характеристики за-
рубежной стали аналогичного состава (типа 316L), изготовленной как с использо-
ванием традиционных технологий, так и с помощью технологии ПЛС.

Показано, что материал, изготовленный при использовании ОПЭ в диапазоне от
45 до 130 Дж/мм3, имеет схожие показатели механических характеристик. Для про-
ведения более подробного анализа особенностей влияния ОПЭ на характеристики
ПЛС-стали 03Х17Н12М2 были исследованы доля МУГ, остаточные напряжения I ро-
да и доля упругой деформации при наноидентировании. Показано, что эти харак-
теристики нелинейно зависят от величины ОПЭ. Продемонстрировано, что комплекс-
ное исследование этих показателей позволяет подтвердить влияние скорости кристал-
лизации при ПЛС на характеристики получаемой структуры на микроуровне, которые
могут существенно влиять на эксплуатационные свойства материала.

Авторы выражают признательность инженеру НИФТИ ННГУ  М.А. Комкову за
проведение РФА-исследований.
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Comprehensive studies of the physical and mechanical properties and structure of chromium-
nickel austenitic stainless steel 03H17N12M2 (Russian analog of 316L steel) produced by
selective laser melting have been carried out. The values of density, tensile strength,
microhardness, shear modulus, nanohardness and Young's modulus were obtained, as well as
the results of studying the structure and phase composition using scanning electron
microscopy, electron backscatter diffraction, and X-ray diffraction. The obtained values of
mechanical properties exceed the mechanical properties of steel 316L stainless steel of a similar
composition, produced using both traditional technologies and selective laser melting. In
order to conduct a more detailed analysis of the features of the material produced by the
selective laser melting and to identify the features of the emerging structure depending on the
volumetric energy density, additional studies were conducted, such as determining the
proportion of low-angle boundaries, determining residual stresses and the proportion of elastic
deformation during nanoidentation. It is shown that a change in the volumetric energy density
in the considered range 45–130 J/mm3 has a negligible effect on the physical and mechanical
properties of the material. However, the cooling rate during selective laser melting, which
depends on the volumetric energy density, has a significant impact on the parameters of the
emerging structure at the microlevel, such as the type of grain boundaries, the density and
mobility of dislocations, etc., which can be an important factor when using the material.

Keywords: additive technologies, chromium-nickel austenitic steel 03H17N12M2 (316L), selective
laser melting, density, tensile strength, microstructure.
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