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Рассматриваются процессы сложного пластического деформирования
латуни Л63 по плоским траекториям непропорционального деформиро-
вания. Используется вариант уравнений упругопластичности Ю.Г. Коротких,
основанный на представлении о поверхности текучести и принципе градиен-
тальности вектора скорости пластических деформаций к поверхности теку-
чести в точке нагружения, уравнения состояния которого отражают основ-
ные эффекты упругопластического деформирования материала для произ-
вольных сложных траекторий деформирования. При занулении соответству-
ющих материальных параметров из общего варианта уравнений, как частный
случай, получаются все основные формы уравнений пластического дефор-
мирования при малых деформациях (система «вложенных» моделей).

Особое внимание уделяется вопросам моделирования процессов уп-
ругопластического деформирования для траекторий непропорционального
нагружения, сопровождающихся вращением главных площадок тензоров
напряжений, полных и пластических деформаций.

Для оценки степени достоверности и определения границ примени-
мости определяющих соотношений пластичности проведены численные
исследования сложного пластического деформирования латуни Л63 по плос-
ким траекториям непропорционального деформирования:

– плоским двухзвенным траекториям с различным углом излома;
– плоским гладким траекториям деформирования различной кривизны;
– четырех окружностей одинакового радиуса с изменением кривизны

при переходе одной полуокружности к другой;
– гладким двухзвенным траекториям деформирования: на первом уча-

стке был реализован процесс пропорционального деформирования круче-
нием, а на втором – процесс сложного деформирования по криволинейным
траекториям постоянного радиуса с различными углами излома.
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Результаты исследования демонстрируют, что модель Ю.Г. Коротких
корректно предсказывает основные эффекты сложного пластического де-
формирования латуни Л63. Модель обеспечивает качественное описание
поведения материалов для плоских траекторий нагружения любой кривизны,
а ее точность является достаточной для выполнения практических расчетов.

Отмечен ряд характерных особенностей, сопровождающих процесс
сложного упругопластического деформирования латуни Л63 (наличие «ныр-
ка» на диаграмме деформирования в экспериментах по типу плоского «ве-
ера», наличие аналогичного «нырка» при переходе от прямолинейного участ-
ка деформирования к криволинейному, на криволинейных траекториях по-
стоянной кривизны, где меняется знак – векторные свойства имеют волно-
образный характер, и др).

Ключевые слова: пластичность, сложное нагружение, моделирование,
численный эксперимент, натурный эксперимент, плоские траектории дефор-
мирования.

Введение

Развитие конструкций и аппаратов современного машиностроения характе-
ризуется ростом рабочих параметров, снижением металлоемкости, значительным рос-
том удельного веса нестационарных режимов нагружения. Указанные тенденции при-
вели к тому, что в настоящее время одной из наиболее важных задач современного
машиностроения является задача надежной оценки ресурса объекта, диагностики выра-
ботанного и прогноза остаточного ресурса в процессе эксплуатации. Эксплуатацион-
ные условия работы таких объектов, как правило, характеризуются нестационарными
термомеханическими нагрузками, воздействиями внешних полей различной приро-
ды, приводящими к деградации начальных прочностных свойств материалов и, в конеч-
ном итоге, исчерпанию ресурса материала наиболее опасных узлов объекта [1–3].

Существуют различные механизмы, которые могут определять процессы исчер-
пания ресурса конкретного объекта: многоцикловая усталость, малоцикловая ус-
талость, нестационарная ползучесть, коррозия и др. (с учетом их взаимодействия),
для которых образование трещины является результатом сложных с физической точки
зрения процессов преобразования начальной структуры конструкционного материала.

На протяжении долгого времени основные исследования в механике деформиру-
емых сред были сосредоточены на создании моделей поведения материалов – урав-
нений состояния. Эти модели описывают реакцию материалов на различные пути
деформирования и температурные режимы нагружения. Разработка таких моделей
стимулировалась, с одной стороны, практическими потребностями в оценке на-
пряженно-деформированного состояния (НДС) элементов конструкций, а с другой
стороны, – развитием технологий численных методов. Современное численное мо-
делирование позволяет рассчитать НДС для очень сложных инженерных конструкций,
используя практически любые нелинейные зависимости между тензорами напряже-
ний, деформаций и их скоростей в реальных эксплуатационных условиях.

В современной механике деформируемых сред ключевой задачей становится
прогнозирование совместного протекания процессов деформации и накопления
повреждений. Это необходимо для ответа на принципиальные вопросы: определение
критических зон конструкции с точки зрения накопления повреждений в материале
с последующим деформированием и развитием магистральной трещины.

Математическая строгость формирует модели, а полнота системы базовых экспе-
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риментов для ее оснащения обеспечивает точность прогноза и оценки ресурса, что
описывает эволюцию НДС в заданных условиях. Несмотря на существование
обширного класса моделей, учитывающих поврежденность, многие из них имеют
существенные ограничения. Зачастую они применимы лишь к узким классам на-
гружения, не интегрированы с уравнениями деформирования и, как следствие, не
способны отразить влияние истории изменения НДС, температуры и скоростей де-
формации на кинетику накопления повреждений.

Между тем, характер предшествующего вязкоупругопластического деформи-
рования – специфика траектории нагружения, режимы изменения температуры, тип
и эволюция напряженного состояния – оказывает большое влияние на интенсивность
процессов развития повреждений. Это обусловливает важность детального анализа
кинетики НДС в опасных зонах конструктивных элементов и его корректного
математического описания с помощью соответствующих уравнений состояния.

Таким образом, современное развитие конститутивных моделей, в частности,
для вязкоупругопластических сред, должно быть подчинено вопросам разрушения.
Необходимо уточнить процедуры расчета деформаций по заданной истории нагруже-
ния на выявление значимых физических закономерностей, которые управляют про-
цессами разрушения.

Разработка и верификация моделей упругопластических сред основывается на
анализе данных, полученных в ходе испытаний лабораторных образцов. Нагружение
при таких испытаниях моделирует условия, в которых конструкционный материал
функционирует в составе реального конструктивного элемента.

Изучение закономерностей упругопластического деформирования также вносит
существенный вклад в развитие фундаментальных основ теории пластичности. Для
подтверждения адекватности определяющих соотношений требуется выполнение рас-
четов и последующее сравнение их результатов с известными экспериментальными
данными для различных по свойствам конструкционных сплавов и широкого спектра
траекторий деформирования. Полученные в таких работах выводы могут быть при-
менены и для уточнения материальных параметров, скалярных функций и функ-
ционалов, входящих в структуру конститутивных соотношений моделей пластично-
сти [4–14].

В настоящем исследовании для моделирования сложного пластического дефор-
мирования латуни Л63 по плоским траекториям с произвольной кривизной при-
меняется одна из современных моделей теории пластического течения, учитывающая
кинематический и изотропный механизмы упрочнения [4, 5]. Результаты численного
моделирования сопоставляются с данными натурных экспериментов, выполненных
на высокоточном автоматизированном испытательном оборудовании [12, 13]. Про-
демонстрировано, что расчетные данные качественно и с удовлетворительной точ-
ностью количественно описывают поведение латуни Л63 при сложном нагружении
по различным плоским траекториям непропорционального деформирования.

1. Базовые конститутивные соотношения модели термопластичности

Система уравнений термопластичности разработана для описания ключевых
эффектов деформирования в материалах [4, 5] при эксплуатационных нагружениях.
Выделены следующие эффекты:

 – упрочнение при монотонных и циклических нагрузках;



414

– локальная анизотропия пластического деформирования при резких изменениях
траекторий деформаций;

– неизотермическое упругопластическое деформирование.
В основу модели положено:
– аддитивность полных деформаций и скоростей деформаций
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где индекс p означает пластичность, e – упругость;
– эволюция поверхности текучести моделируется в пространстве напряжений

через изменение радиуса Cp и смещение центра ;p
ij

– модель развита в диапазоне малых деформаций;
– изменение объема материала чисто упругое;
– материал изотропен в исходном состоянии.
Современные экспериментальные и теоретические исследования позволили

установить следующие закономерности поведения материалов [6–14]:
– процесс упрочнения при монотонном нагружении включает в себя две состав-

ляющие: кинематическое и изотропное упрочнение;
– величина модуля упрочнения является непостоянной и изменяется в зависимо-

сти от ориентации вектора приращения напряжений в данной точке нагружения;
– закономерности циклического и монотонного упрочнений различны;
– переходные нестационарные процессы при циклическом нагружении определя-

ет изотропная составляющая упрочнения;
– стабилизированные петли гистерезиса формируются интенсивностью амплитуды

деформаций и характеристиками непропорциональности циклического нагружения,
а закономерности деформирования в петле – анизотропной составляющей упрочнения;

– жесткое циклическое нагружение в условиях начальной анизотропии сопровож-
дается релаксацией средних напряжений цикла.

В рамках представленной модели пластичности для математического описания
перечисленных закономерностей циклического деформирования используется
система эволюционных уравнений для радиуса поверхности текучести Cp и для коор-
динат ее центра .p

ij
Основные соотношения модели термопластичности с комбинированным кинема-

тическим и изотропным упрочнением заключаются в следующем [4, 5].
Критерий пластичности. Для моделирования поведения материала при монотон-

ном и циклическом нагружении в пространстве напряжений вводится критерий
пластичности Мизеса, который математически представляется уравнением:

,,02 p
ijijijpijijs SCSSF  (1)

где ij  – компоненты девиаторной части тензора напряжений.
Эволюционное уравнение для радиуса поверхности текучести. Принимает-

ся эволюционное уравнение для радиуса поверхности текучести вида [4, 5]:
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Отмечены материальные параметры и скалярные функции модели термоплас-
тичности: q1, q2, q3 – модули изотропного упрочнения, описывающие монотонное
лучевое нагружение (q1), излом траектории деформирования на 90° (q2), темпера-
турную зависимость радиуса поверхности текучести (q3); a – постоянная, определяю-
щая скорость стабилизации формы петли гистерезиса; Qs – стационарное значение
радиуса поверхности текучести при заданных max и температуре T;  и m – длины
траекторий пластического деформирования при циклическом и монотонном нагру-
жениях; 

0
pC  – начальный радиус поверхности текучести.

Уравнение (2) в целом моделирует локальную анизотропию пластического упроч-
нения через параметр A, который количественно характеризует отклонение векто-
ра догрузки от нормали к поверхности текучести в точке нагружения. Первый член
описывает изотропное упрочнение при монотонном пластическом деформировании
(H(F) = 1 и (F) = 0), второй член характеризует циклическое упрочнение матери-
ала (H(F) = 0 и (F) = 1), третий член учитывает изменение радиуса поверхности
текучести при варьировании температуры. Операторы H(F) и (F) обеспечивают
автоматическое разделение процессов монотонного и циклического деформирования.

Уравнение для смещения поверхности текучести. Смещение центра поверх-
ности текучести происходит по принципу деформационного запаздывания А.А. Иль-
юшина [15]. Тогда упрочнение зависит лишь от характеристик деформирования на
конечном участке траектории, непосредственно предшествующем текущему состоя-
нию:
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где 0,0 21  pp gg  и 03 pg  – модули анизотропного упрочнения. Первый и второй
члены этого уравнения отвечают за анизотропную часть деформационного упрочнения,
а третий – за изменение 

p
ij  в результате воздействия температуры T.

Уравнение (9) описывает пространственный эффект Баушингера и анизотропию
механических свойств при изменении направления деформирования. Второй член
описывает эффект затухающей памяти по внутренней переменной ,p

ij  посколькуу
скорость изменения 

p
ij  определяется разностью двух составляющих 
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Система уравнений (1)–(9) представляет собой обобщенную формулировку, ко-

торая в частных случаях содержит все основные известные формы уравнений теории
пластического течения в рамках предположения о малых деформациях.

а) Частный случай изотропного упрочнения. При 0321  ppp ggg  и 0 p
ij

в уравнении (9) модель сводится к случаю чисто изотропного нелинейного упроч-
нения, описываемого уравнением (2). В этом режиме функция H(F) принимает
значение 1, и циклическое упрочнение не учитывается.
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Если в (2)–(8) 1 и 2  0, то изменение изотропного и кинематического упроч-
нения при непропорциональном деформировании не учитывается: q = q1, а Qs = Q1.

Если q  const, то описывается линейное изотропное упрочнение.
Если q  0, то описывается идеально пластический материал Прандтля – Рейса

с постоянной поверхностью текучести .0
pp CC 

б) Частный случай кинематического упрочнения. При q = q2 = q3 = a  0 в (2)
имеем случай чисто кинематического нелинейного упрочнения, описываемого уравне-
нием (9).

Если 02 pg  и const,1 pg  имеем случай линейного кинематического упрочнения.
в) Общий случай кинематического и изотропного упрочнения. При соответст-

вующем выборе параметров уравнения (1)–(9) переходят в модель J.L. Shaboche,
которая описывает нелинейное кинематическое и изотропное упрочнение без учета
циклического упрочнения [16].

Проблема моделирования указанных процессов приводит к необходимости ин-
тегрирования нелинейных обыкновенных дифференциальных уравнений с начальными
условиями. Выбор эффективного алгоритма численного интегрирования этих уравне-
ний имеет определяющее значение для обеспечения устойчивости процесса вычис-
лений параметров процесса деформирования и сокращения времени счета.

В настоящей статье определение основных характеристик процесса упругоплас-
тического деформирования материалов (параметров состояния), которые в общем
случае описываются тензорами ij, eij, 

p
ij

p
ije ,  и скалярами , Cp, T, сводится к на-

писанию определяющих соотношений термопластичности в приращениях, которые
зависят от выбранного шага t. Величина t может оперативно корректироваться в
расчетах при прохождении участков траектории со сложным характером деформи-
рования. Основным критерием корректировки является обеспечение устойчивости
вычислительного процесса. Численные исследования демонстрируют, что применя-
емая явная схема Эйлера показывает удовлетворительную точность при моделиро-
вании рассматриваемых процессов, несмотря на свойство условной устойчивости.
Ключевым фактором успешного применения этой схемы является обоснованный
выбор величины шага интегрирования t. Для практической реализации требуется
разработка специализированной методики, которая позволит контролировать скорости
изменения рассчитываемых параметров и на основе этого анализа адаптивно опре-
делять оптимальную величину t на каждом этапе расчета. Авторы предлагают выби-
рать t в зависимости от скорости изменения искомой величины ).,( tyfy   На ша-
ге интегрирования t = tn+1 – tn  величина yn+1 = yn + ft. Шаг интегрирования t и
ошибка интегрирования  определяются по формулам [17]:
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где max есть верхняя граница .

2. Сравнение численных результатов
с экспериментальными данными

В публикациях [12, 13, 18–21] представлены экспериментальные данные по про-
порциональному и непропорциональному циклическому упругопластическому дефор-
мированию конструкционных металлов и сплавов. Испытания проводились в лабора-
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тории механических испытаний на высокоточном автоматизированном расчетно-
экспериментальном комплексе [12, 13].

Экспериментальные исследования выполнялись при нормальной температуре
(20 °C) на тонкостенных трубчатых образцах из латуни марки Л63 в состоянии
поставки. Геометрия образцов характеризовалась следующими параметрами: длина
рабочей части l = 110 мм, толщина стенки h = 1 мм, радиус срединной поверхности
R = 15,5 мм.

Нагружение образцов осуществлялось по заданной программе испытаний комби-
нацией осевой силы P, внутреннего давления q и крутящего момента M. Расчет
компонент тензоров напряжений и деформаций в рабочей зоне образца выполнялся
по стандартным расчетным формулам для данной геометрии:
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где  – угол закручивания.
В опытах измерялись деформации e11, e22, e12 и напряжения 11, 22, 12. Векторы

напряжений   и деформаций e  в трехмерном совмещенном векторном подпро-
странстве девиаторов с общим неподвижным репером }{ ke  имеют вид:
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При обработке экспериментальных данных принималось условие несжимаемости
e11 + e22 + e33 = 0 и считалось, что 33 = 0 [12, 13, 15–18].

В [18–21] исследовались плоские траектории нагружения с постоянной и пере-
менной кривизной. Эксперименты проводились в режиме управляемой деформации
(«жесткое нагружение»).

При проведении численного моделирования указанных процессов с применением
разработанных конститутивных соотношений [4, 5] в качестве входных данных ис-
пользовались экспериментально зарегистрированные временные зависимости ком-
понент тензора деформаций eij(t). Расчет эволюции компонент тензора напряжений
выполнялся путем численного интегрирования системы определяющих уравнений
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при заданной истории деформирования. Полученные в результате моделирования
данные прошли процедуру верификации путем прямого сравнения с результатами
натурных экспериментов.

В исследованиях [18–21] рассматривалась серия экспериментов по сложному
нагружению латуни Л63 по двухзвенным ломаным траекториям с различными углами
излома. Нагружение задавалось в плоскости (Э1Э3), а картина напряжений опреде-
лялась в пространстве напряжений.

Испытания содержат результаты четырех экспериментов с точкой излома при
%.2*

1 Э  На рис. 1 представлены двухзвенные траектории деформирования с углами
излома 1 – 0°, 2 – 45°, 3 – 90° и 4 – 135°. После излома траектории при угле 45° об-
разец подвергался одновременному действию кручения и растяжения; при угле 90° –
только кручению; при угле 135° – одновременному кручению и сжатию.

В связи с отсутствием полного объема экспериментальных данных, необходимых
для идентификации полной модели, исследовался ее частный случай – модель термо-
пластичности с нелинейным кинематическим упрочнением, не учитывающая эффекты
циклического упрочнения. Данные по латуни Л63 приведены в таблице 1.

Таблица 1
Модуль упругости и материальные параметры латуни Л63

Физико-механические T = 20 °C
характеристики латуни Л63

K, МПа 121800
G, МПа 34700
Cp

0, МПа 150
gp

1, МПа 21000
gp

2 400

На рис. 2 представлено сравнение расчетной и экспериментальной диаграмм
u–eu, характеризующих скалярные свойства материала. Здесь и во всех последую-
щих иллюстрациях экспериментальные данные обозначены пунктирной линией, а
результаты расчетов – сплошной линией. Анализ показывает, что в момент изменения
направления деформирования на диаграммах наблюдаются характерные зоны резкого
изменения напряжений («нырки»), величина которых зависит от угла излома траек-
тории.

На рис. 3 приведены локальные диаграммы деформирования 11–e11 (а) и
12–e12 (б). Сравнение демонстрирует соответствие. Совпадение достигается в рам-
ках инженерных расчетов, что свидетельствует об адекватности используемой част-
ной формы теории течения и корректности определения материальных параметров

Э1, %
3,0
2,5
2,0
1,5
1,0
0,5

0              0,5          1,0          1,5         Э3, %

1 2

3

Рис. 1

4
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конститутивных соотношений упругопластичности для описания сложного пластиче-
ского деформирования латуни Л63.

Во втором примере рассматриваются плоские гладкие траектории деформиро-
вания различной кривизны. Эксперименты, результаты которых показаны на рис. 4,
выполнялись в пространстве деформаций А.А. Ильюшина (Э1– Э3) [15] при одно-
временном действии осевой силы и крутящего момента: начинающийся из начала
координат путь окружностей различного радиуса и различной кривизны.

На рис. 5, 6 приведены локальные траектории деформирования. Анализ пока-
зывает качественнное соответствие.

В третьем примере рассматривается программа нагружения, представленная на
рис. 7. Программа состоит из этапов:

– четыре полуокружности равного радиуса в девиаторном пространстве А.А. Иль-
юшина, первая из которых начинается в начале координат;

 – после достижения первой полуокружностью определенного значения (Э1 =
= 0,5%) кривизна изменяется по заданному закону для формирования второй полу-
окружности;

– по представленному описанию строятся третья и четвертая полуокружности;

Рис. 2

u, МПа

0                 1              2             3          eu, %

1

23

4

11, МПа

0      0,5     1,0      1,5     2,0     2,5   e11, %

–200
–100

0
100
200

а)

4

3
2

1

0                0,4            0,8            1,2          e12, %

40

80

120

160
12, МПа

б)

4

3

2

1

Рис. 3

50

100

150

200

–0,01        0        0,01   Э3, %
Рис. 4

0

0,01

0,02

0,03
Э1, %



420

– завершение четвертой полуокружности не меняет закон изменения кривизны,
но меняет знак кривизны для формирования полной окружности;

– завершающий этап включает в себя сжатие образца с одновременным знако-
переменным кручением.

На рис. 8 представлена соответствующая траектория в пространстве напряжений
(отклик).

На рис. 9 показано сравнение экспериментальных и расчетных данных для гло-
бальной диаграммы деформирования u–eu, отражающей эволюцию процесса
деформирования, который характеризует скалярные свойства материала. Можно
наблюдать, что при переходе между участками нагружения (в момент изменения
знака кривизны окружности) на диаграмме деформирования возникает характерная
зона резкого изменения напряжений («нырок»), аналогичная наблюдаемой на двух-
звенных ломаных траекториях в точках излома.

На рис. 10 представлены локальные диаграммы деформирования 11–e11 (а) и
12–e12 (б). Анализ показывает качественное соответствие между эксперименталь-
ными данными и результатами моделирования, причем точность количественного
совпадения является приемлемой для инженерных расчетов. Обнаруженные незна-
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чительные расхождения между расчетными и экспериментальными значениями могут
быть объяснены, вероятно, двумя факторами: некоторой погрешностью в определении
материальных параметров модели, а также принятым при обработке эксперимен-
тальных данных допущением о несжимаемости материала.

В следующем эксперименте на начальном участке было реализовано простое
деформирование кручением до достижения определенного значения (Э*

3 = 1%). Из
этой точки начинался процесс сложного пластического деформирования по криво-
линейной траектории постоянной кривизны (круговой траектории) в пространстве
А.А. Ильюшина [15]. Точка излома на переходе отсутствовала. На второй круговой
траектории выполнялся излом под углом 45°, а далее – движение по окружности
того же радиуса. Рассмотрено 5 окружностей с одинаковыми параметрами: углом
излома, радиусом и кривизной (рис. 11).
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Локальная диаграмма деформирования 11–e11 показана на рис. 12, а глобальная
диаграмма u–eu приведена на рис. 13.

Наблюдается соответствие между экспериментальными и расчетными данными.
Некоторые расхождения могут быть объяснены тем, что использовался не полный
вариант модели термопластичности, а ее частный случай – модель теории течения
с нелинейным кинематическим упрочнением, что связано с ограниченным объемом
экспериментальных данных, доступных для идентификации параметров полной
модели.

Заключение

Проведена проверка адекватности конститутивных соотношений теории плас-
тического течения, учитывающей изотропное и кинематическое упрочнение, путем
сравнения результатов численного моделирования с экспериментальными данными
по деформированию латуни Л63 по плоским траекториям с различной кривизной.
Подтверждена корректность модели как пропорционального, так и непропор-
ционального пластического деформирования конструкционных сплавов при нагру-
жении по произвольным плоским траекториям.

Анализ модели [16, 22, 23] позволяет рекомендовать ее к расчетам конструк-
тивных узлов материальных объектов, работающих в условиях нестационарного
термомеханического нагружения.
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This paper examines complex plastic deformation processes in L63 brass along plane trajectories
of disproportionate deformation. The version of Yu.G. Korotkikh's elastic-plasticity equations
used in this paper is based on the concept of a yield surface and the principle of the gradient
of the plastic strain rate vector to the yield surface at the loading point. This version of the
equations of state reflects the fundamental effects of elastic-plastic deformation of the material
for arbitrary complex deformation trajectories.
By setting the corresponding material parameters from the general version of the equations to
zero, as a special case, all of its fundamental forms of plastic equations for small deformations
are obtained (a system of “nested” models).
Particular attention is given to modeling elastic-plastic deformation processes for dispro-
portionate loading trajectories accompanied by rotation of the principal areas of the stress
tensors, total and plastic strains.

* The research was carried out with the financial support of the Ministry of Science and
Higher Education of the Russian Federation (Project No FSWR-2023-0036).
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To assess the reliability and determine the applicability limits of the constitutive plasticity
relations, numerical studies were conducted on the complex plastic deformation of L63 brass
along planar trajectories of disproportionate deformation:
– planar two-link trajectories with varying fracture angles;
– planar smooth deformation trajectories of varying curvature;
– four semicircles of equal radius with a change in curvature as one circle passes into another;
– smooth two-link deformation trajectories: the first section was characterized by proportional
torsional deformation, while the second section was characterized by complex deformation
along curved trajectories of constant radius with varying fracture angles.
The results of the study demonstrate that Yu.G. Korotkikh's model accurately predicts the main
effects of complex plastic deformation of L63 brass. The model provides a qualitative description
of material behavior for flat loading trajectories of any curvature, and its accuracy is sufficient
for practical calculations.
A number of characteristic features accompanying the complex elastoplastic deformation of
L63 brass are noted (the presence of a “dip” in the stress-strain diagram in flat “fan” experiments,
the presence of a similar “dip” when transitioning from a rectilinear to a curved section of
deformation, and on curved trajectories of constant curvature where the sign changes-vector
properties have a wave-like character, etc.).

Keywords: plasticity, complex loading, modeling, numerical experiment, full-scale experiment,
flat deformation trajectories.


