УДК 539.3

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПРОЦЕССОВ СЛОЖНОГО ДЕФОРМИРОВАНИЯ МАТЕРИАЛА СТ45 НА МНОГОЗВЕННЫХ ТРАЕКТОРИЯХ^{*)}

В.Г. Зубчанинов, В.И. Гультяев, Д.В. Зубчанинов

Тверь

Представлены результаты экспериментального исследования механических свойств материала СТ45 при сложном деформировании по плоским четырехзвенным траекториям с учетом сложного разгружения материала.

В статье представлены результаты экспериментального исследования напряженно-деформированного состояния цилиндрической оболочки при растяжении с кручением в пространстве деформаций по четырехзвенной плоской ломаной траектории. Стальной трубчатый образец имел толщину стенки h = 1 мм, радиус срединной поверхности R = 15,5 мм, длину рабочей части l = 110 мм. Материал образцов в достаточной степени начально изотропен, модуль упругости $E = 2 \cdot 10^5$ МПа, коэффициент Пуассона $\mu = 0,3$; предел текучести при одноосном растяжении $\sigma_{\rm T} =$ = 330 МПа, $\sigma^{\rm T} = \sqrt{2/3}\sigma_{\rm T} = 270$ МПа. При обработке экспериментальных данных принималось условие несжимаемости ($\varepsilon_0 = 0$).

Программа испытаний реализовывалась в векторном пространстве деформаций в плоскости Э₁Э₃ (рис. 1).

Соответствующий ей отклик реализовывался в плоскости S_1S_3 векторного пространства девиатора напряжений (рис. 2). Компоненты векторов напряжений и деформаций и их модулей в девиаторных подпространствах напряжений и деформации вычислялись по формулам:

^{*)} Статья выполнена при поддержке грантом РФФИ № 05-08-01442а.

$$S_{1} = \sqrt{\frac{2}{3}} \left(\sigma_{11} - \frac{1}{2} \sigma_{22} \right), \quad S_{2} = \frac{\sigma_{22}}{\sqrt{2}}, \quad S_{3} = \sqrt{2} \sigma_{12}, \tag{1}$$

$$\begin{aligned} \Im_{1} &= \sqrt{\frac{3}{2}} (\varepsilon_{11} - \varepsilon_{0}), \quad \Im_{2} &= \sqrt{2} \bigg(\varepsilon_{22} + \frac{1}{2} \varepsilon_{11} - \frac{3}{2} \varepsilon_{0} \bigg), \quad \Im_{3} &= \sqrt{2} \varepsilon_{12} ,\\ \sigma &= \sqrt{S_{1}^{2} + S_{2}^{2} + S_{3}^{2}}, \quad \Im &= \sqrt{\Im_{1}^{2} + \Im_{2}^{2} + \Im_{3}^{2}}, \end{aligned}$$
(2)

где σ_{ij} , ε_{ij} (i, j = 1, 2, 3) – компоненты тензоров напряжений и деформации [1, 2].

Особенность программы состояла в том, что после простого деформирования кручением до уровня $\Im = \Im_3 = 1,5\%$ производился излом траектории деформирования на угол 135°, после чего происходило сложное разгружение образца. После излома траектории в точке K_0 образец подвергался одновременному действию кручения и растяжения материала до точки K_1 . При этом образец разгружался локально кручением до $\Im_3 = -1\%$ при одновременном локальном увеличении деформации растяжения до уровня $\Im_1 = 2,5\%$. После второго излома траектории в точке K_1 образец разгружался сжатием до точки K_2 до уровня $\Im_1 = 0\%$ при постоянном значении $\Im_3 = -1\%$. После третьего излома в точке K_2 траектории деформирования на угол 90° образец снова закручивался до $\Im_3 = -2\%$ при постоянном $\Im_1 = 0$ (точка K_3), после чего разгружался из точки излома K_3 до $S_3 = 0$ и $S_1 = 0$ (см. рис. 1, 2).

На рис. 3, 4 представлены глобальная диаграмма деформирования материала σ –Э и диаграмма прослеживания процесса нагружения σ –*s*, где *s* – длина дуги траектории деформирования; на рис. 5, 6 – локальные диаграммы деформирования S_1 – Θ_1 , S_3 – Θ_3 .

После каждого излома траектории в точках K_0, K_1, K_2, K_3 на диаграмме деформирования (см. рис. 3) наблюдались обратные "нырки" напряжений, а на диаграмме прослеживания процесса нагружения (см. рис. 4) имели место прямые "нырки" напряжений [4]. Точками M₁, M₂, M₃ отмечены на "нырках" точки, в которых достигался σ_{\min} . На ниспадающих участках "нырков" $K_{i-1} - M_i$ (i = 1, 2, 3) происходила частичная упругая разгрузка при пассивном процессе деформирования ($dA_{b} < 0$, $\vartheta_1 > \pi/2$), а на восходящих участках – неполное упругопластическое деформирование при активном процессе деформирования ($dA_{\phi} > 0, \vartheta_1 > \pi/2$), dA_{ϕ} – приращение элементарной работы деформации формоизменения, ϑ_1 – угол сближения между вектором напряжений и касательным вектором к траектории деформации. Граница между активным и пассивным процессами деформирования примерно соответствовала точкам, где $\sigma = \sigma_{\min}$. Процесс пассивного нагружения–разгружения ($dB_{\phi} > 0$, $\pi/2 \le \vartheta_1^* \le \pi$) реализовывался на участках $K_{i-1} - A_i$ (i = 1, 2, 3); dB_{ϕ} – приращение элементарной дополнительной работы напряжений, ϑ_1^* – угол сближения между вектором деформаций и касательной к траектории нагружения. Это участки сложного разгружения материала. В точках A_i происходила смена пассивных процессов нагружения на активные $(dB_{\phi} > 0, 0 \le \vartheta_1^* \le \pi/2).$

На рис. 7 изображен график поведения угла сближения ϑ_1 в процессе деформирования материала. Для определения угла ϑ_1 использовалась формула

$$\cos \theta_1 = \frac{1}{\sigma} \left(S_k \frac{d \,\overline{\vartheta}_k}{ds} \right) \quad (k = 1, 2, 3). \tag{3}$$

Стрелками на рис. 7 указаны характерные точки смены состояний деформирования. В точках A_i окончания сложной разгрузки $dA_{\phi} = 0$, $\vartheta_1 = \pi/2$, $dB_{\phi} = 0$, $\vartheta_1^* = \pi/2$.

На рис. 8 показана диаграмма прослеживания процесса деформирования Э– Σ , где Σ – длина дуги траектории нагружения. На этой диаграмме участки K_0-A_1 , K_1-A_2 отвечают пассивным процессам нагружения, то есть сложной разгрузке материала. Соответствующие "нырки" $K_0A_1K_1$, $K_1A_2K_2$ названы В.Г. Зубчаниновым "нырками" деформации [4].

Таким образом, сложная разгрузка материала описывается "нырками" напряжений и деформаций $K_{i-1} - A_i$ по терминологии, введенной В.Г. Зубчаниновым в работе [4]. "Нырок" напряжений состоит из участка частичной упругой разгрузки и участка неполного упругопластического догружения и в целом не описывается линейным законом разгрузки. "Нырок" деформаций дает закон сложной разгрузки в целом и приближенно может быть аппроксимирован линейной зависимостью.

Литература

1. *Зубчанинов, В.Г.* Математическая теория пластичности / В.Г. Зубчанинов. – Тверь: ТГТУ, 2002. – 300 с.

2. Зубчанинов, В.Г. Механика сплошных деформированных сред / В.Г. Зубчанинов. – Тверь: ТГТУ, 2002. – 703 с.

3. *Зубчанинов, В.Г.* Основы теории упругости и пластичности / В.Г. Зубчанинов. – М.: Высшая школа, 1990. – 368 с.

4. Зубчанинов, В.Г. Об активных и пассивных процессах сложного нагружения-разгружения в теории пластичности / В.Г. Зубчанинов // Современные проблемы термовязкопластичности: Труды 2-й школы-семинара. – М.: МГТУ "МАМИ", 2007. – С. 9–18.

5. Зубчанинов, В.Г. Экспериментальное исследование процессов сложного нагружения материалов на многозвенных траекториях / В.Г. Зубчанинов, В.И. Гультяев, Д.В. Зубчанинов // Современные проблемы термовязкопластичности: Труды 2-й школы-семинара. – М. МГТУ "МАМИ", 2007. – С. 3–8.

[06.07.2007]

EXPERIMENTAL INVESTIGATION OF COMPLEX DEFORMATION PROCESSES IN THE CT45 STEEL ON MULTY-SECTION PATHS

V.G. Zubchaninov, V.I. Gul'tyayev, D.V. Zubchaninov

The paper presents the results of the experimental study of mechanical properties of the CT45 steel under complex deformation along plane four-section paths, accounting for complex unloading of the material.