УДК 539.3

СПОСОБ ОПРЕДЕЛЕНИЯ ПРОДОЛЬНОЙ СИЛЫ В РАСТЯНУТЫХ ЭЛАСТИЧНЫХ СТРУКТУРАХ

Ю.П. Гуляев

Саратов

Как известно, все сосуды, нервы, сухожилия в человеческом организме находятся в натянутом состоянии. От величины сосудистого тонуса зависит нормальная работа сосудов и кровеносной системы организма в целом. Поэтому во время операций, связанных с трансплантацией, необходимо заранее учитывать силу предварительного натяжения стенок сосуда. Эта сила заранее не известна и подлежит определению в каждом отдельном случае. В данной работе предлагается относительно простая методика, позволяющая достаточно точно оценить силу предварительного натяжения произвольной эластичной структуры.

1. Постановка задачи

Для определения силы предварительного натяжения необходимо жестко закрепить в двух точках концы исследуемого участка эластичной структуры (рис. 1). Поперечную силу прикладывают дваж-

ды к середине участка и дважды измеряют величину перемещения точки приложения силы и саму силу [1].

На рис.1 введены следующие обозначения: 2x - длина закрепленного участка нити; d_1 , d_2 – перемещения средней точки участка соответственно при первом и втором нагружении поперечными силами F_1 и F_2 ; T_1 , T_2 –дополнительные растягивающие силы в нити; S – искомая сила предварительного натяжения нити.

2. Случай нелинейно-упругого поведения материала нити. Эксперимент

Для описания нелинейно-упругого поведения нити при больших деформациях был проведен эксперимент по построению диаграммы растяжения. В качестве материала использовалась резиновая нить с квадратным поперечным сечением размером $1,5\times1,5$ мм. Диаграмма растяжения материала была получена на испытательной машине TIRATest 28005. В эксперименте использовались нити с разной линейной базой: L = 70 мм и L = 40 мм. На рис. 2 приведена одна из таких диаграмм для базы L = 70 мм.

Была изготовлена специальная оснастка, реализующая данную схему нагруже-

ния нити (см. рис. 1). Здесь x=42 мм. Для закрепления концов резины использовались специальные зажимы. Один конец жестко фиксировался, а на другой конец нити вешался груз весом в 50 г (0,49 H) и 100 г (0,98 H). После этого второй конец тоже жестко фиксировался. Затем с помощью испытательной машины дважды прикладывали силу по оттягиванию резины в точке, равноудаленной от обоих концов, и получали необходимые перемещения d_1 , d_2 средней точки и величину оттягивающей силы F_1 , F_2 .

Получим уравнения, из которых можно определять силу предварительного натяжения нити, используя данные вышеописанного эксперимента.

На диаграмме (см. рис. 2) представлена экспериментальная зависимость $P/F = \sigma = 1/F f(\varepsilon)$ – нелинейный закон Гука при больших деформациях. Здесь σ – напряжение в растягиваемой нити, F – площадь поперечного сечения нити, P – сила натяжения нити. На основании этой зависимости и условия равновесия узлов (средней точки нити) можно написать следующие равенства:

$$T_{1,2} + S = f(\varepsilon_0 + \varepsilon_{1,2}),$$

где $f(\varepsilon_0) = S$ – сила предварительного натяжения, $T_{1,2}$ – дополнительные силы натяжения нити соответственно при первом и втором нагружениях; $\varepsilon_{1,2}$ – дополнительные деформации нити, вызываемые первым и вторым нагружениями, откуда

$$\frac{T_1}{T_2} = \frac{f(\varepsilon_0 + \varepsilon_1) - S}{f(\varepsilon_0 + \varepsilon_2) - S},\tag{1}$$

$$\frac{T_1}{T_2} = \frac{1/2d_1\sqrt{d_1^2 + x^2}F_1 - S}{1/2d_2\sqrt{d_2^2 + x^2}F_2 - S}.$$
(2)

Приравнивая правые части равенств (1) и (2), приходим к решению следующей системы нелинейных уравнений относительно ε_0 и *S*:

$$\begin{cases} \frac{f(\varepsilon_{0} + \varepsilon_{1}) - S}{f(\varepsilon_{0} + \varepsilon_{2}) - S} = \frac{1/2d_{1}\sqrt{d_{1}^{2} + x^{2}}F_{1} - S}{1/2d_{2}\sqrt{d_{2}^{2} + x^{2}}F_{2} - S}, \\ f(\varepsilon_{0}) = S. \end{cases}$$
(3)

Система уравнений (3) легко сводится к одному разрешающему уравнению относительно предварительной деформации ε_0 :

$$FF(\varepsilon_{0}) = f(\varepsilon_{0}) \left(\frac{1}{2d_{2}} \sqrt{d_{2}^{2} + x^{2}} F_{2} - \frac{1}{2d_{1}} \sqrt{d_{1}^{2} + x^{2}} F_{1} + f(\varepsilon_{0} + \varepsilon_{1}) - f(\varepsilon_{0} + \varepsilon_{2}) \right) - \left(\frac{1}{2d_{2}} \sqrt{d_{2}^{2} + x^{2}} F_{2} f(\varepsilon_{0} + \varepsilon_{1}) - \frac{1}{2d_{1}} \sqrt{d_{1}^{2} + x^{2}} F_{1} f(\varepsilon_{0} + \varepsilon_{2}) \right) = 0, \quad (4)$$

где $\varepsilon_1 = (\sqrt{d_1^2 + x^2} - x)/L$, $\varepsilon_2 = (\sqrt{d_2^2 + x^2} - x)/L$.

Из этого уравнения находим предварительную деформацию нити ε_0 и силу предварительного натяжения нити $S = f(\varepsilon_0)$. Уравнение (4) было решено численно для следующих четырех случаев:

a) $L = 70 \text{ MM}, S_3 = 0,49 \text{ H} \Rightarrow \varepsilon_0 = 0,225;$ b) $L = 70 \text{ MM}, S_3 = 0,98 \text{ H} \Rightarrow \varepsilon_0 = 0,686;$ c) $L = 40 \text{ MM}, S_3 = 0,49 \text{ H} \Rightarrow \varepsilon_0 = 0,541;$ c) $L = 40 \text{ MM}, S_3 = 0,98 \text{ H} \Rightarrow \varepsilon_0 = 1,487.$

На рис. 3 показано графическое решение нелинейного уравнения относительно ϵ_0 для случая а).

3. Аппроксимация экспериментальных данных с помощью ряда Фурье

Чтобы численно решить уравнение (4), диаграмму $f(\varepsilon)$ аппроксимируем рядом Фурье. Для этого разобьем отрезок [0, *T*], на котором задана функция $f(\varepsilon)$, точками с шагом 5 мм (T=245 мм для L=70 мм, T=195 мм для L=40 мм). Таким образом, получим кусочно-линейную аппроксимацию диаграммы в точках с координатами (y_i, f_i), $i = \overline{0, k}$, (k=49 для L=70 мм, k=39 для L=40 мм). Все линейные перемещения нити относим к базе L (далее черточки над величинами опускаем), то есть

$$\overline{y}_i = \frac{y_i}{L}, \quad \overline{T} = \frac{T}{L}$$

После этого раскладываем кусочно-линейную функцию в ряд Фурье с периодом Т:

$$F(t) = \frac{a_0}{T} + \sum_{n=1}^{N} \left(a_n \cos\left(2\pi n \frac{t}{T}\right) + b_n \sin\left(2\pi n \frac{t}{T}\right) \right),$$

231

где коэффициенты ряда считаются по формулам:

$$a_{n} = \sum_{i=1}^{k} \left[\frac{1}{\pi n} \left(f_{i+1} \sin\left(2\pi n \frac{y_{i+1}}{T}\right) - f_{i} \sin\left(2\pi n \frac{y_{i}}{T}\right) \right) + \frac{T}{2\pi^{2} n^{2}} \frac{f_{i+1} - f_{i}}{y_{i+1} - y_{i}} \left(\cos\left(2\pi n \frac{y_{i+1}}{T}\right) - \cos\left(2\pi n \frac{y_{i}}{T}\right) \right) \right],$$

$$a_{0} = \sum_{i=1}^{k} \left[\left(f_{i} + \frac{1}{2} (f_{i+1} - f_{i}) \right) (y_{i+1} - y_{i}) \right],$$

$$b_{n} = \sum_{i=1}^{k} \left[\frac{1}{\pi n} \left(f_{i+1} \cos\left(2\pi n \frac{y_{i+1}}{T}\right) - f_{i} \cos\left(2\pi n \frac{y_{i}}{T}\right) \right) + \frac{T}{2\pi^{2} n^{2}} \frac{f_{i+1} - f_{i}}{y_{i+1} - y_{i}} \left(\sin\left(2\pi n \frac{y_{i+1}}{T}\right) - \sin\left(2\pi n \frac{y_{i}}{T}\right) \right) \right].$$

На рис. 4 представлены результаты аппроксимации диаграммы отрезком ряда Фурье, в котором удержано *N*=1000 членов. Сплошной линией показана экспериментальная кривая, а прерывистой – кривая, полученная в результате аппроксимации. Визуально эти кривые неразличимы. Для удобства прерывистая кривая изображена на другом участке периода, иначе эти кривые просто сольются.

4. Аппроксимация экспериментальной диаграммы с помощью функции $v = e^x$

Более удобно и просто аппроксимировать диаграмму материала с помощью функции $f(x) = c_1 e^x - c_2 x - c_3$. Коэффициенты c_1, c_2, c_3 подбираются методом наименьших квадратов [2].

Для рассматриваемого случая возьмем следующие значения $x_i, y_i, i = \overline{1, 4}$, где *x_i* – значения деформации, а *y_i* – соответствующее значение прикладываемой силы:

1) для L = 70 мм $x_i = (0; 0, 414; 2; 3, 5), y_i = (0; 0, 72; 2, 51; 7, 47);$ 2) для L = 40 мм $x_i = (0; 0, 25; 3, 125; 4, 875), y_i = (0; 0, 34; 2, 51; 7, 96).$ Базисные функции f_i , $j = \overline{1,3}$, имеют вид:

$$f_1 = e^x$$
, $f_2 = -x$, $f_3 = -1$.

Тогда, согласно методу наименьших квадратов, коэффициенты *c*₁, *c*₂, *c*₃ будут иметь следующие значения:

1) для L = 70 мм $c_1 = 0,147$, $c_2 = -0,737$, $c_3 = 5,283 \cdot 10^{-4}$; 2) для L = 40 мм $c_1 = 0,042$, $c_2 = -0,479$, $c_3 = -0,057$.

На графике (рис. 5) показаны полученная функция f(x) (пунктирная линия), выбранные точки (x_i, y_i) , $i = \overline{1,4}$, (квадратики) и экспериментальная кривая (сплошная линия) для L = 70 мм.

Как видно из графика, показательная функция достаточно точно аппроксимирует значительную часть экспериментальной диаграммы материала нити.

5. Аппроксимация диаграммы с помощью функции $y = \sqrt{x}$

Начальный участок экспериментальной кривой Рис. 5 приблизим функцией $f(x) = c_1 \sqrt{x}$. Коэффициент c_1 также будем находить с помощью метода наименьших квадратов. Возьмем следующие значения x_i , y_i , $i = \overline{1,3}$, где x_i – значения деформации, а y_i – соответствующее значение прикладываемой силы:

1) для L = 70 мм $x_i = (0; 0, 128; 0, 714), y_i = (0; 0, 34; 0, 91);$

2) для L = 40 мм $x_i = (0; 0, 25; 1, 375), y_i = (0; 0, 34; 0, 91).$

Базисная функция f_1 имеет вид: $f_1 = \sqrt{x}$. Тогда, согласно методу наименьших квадратов, коэффициенты c_1 будут иметь вид:

На графике (рис. 6) показаны полученная функция f(x) (пунктирная линия), выбранные точки (x_i, y_i) , $i = \overline{1, 3}$, (квадратики) и экспериментальная кривая (сплошная линия) для базы L = 70 мм.

Аппроксимация начального участка диаграммы степенной функцией оказывается вполне удовлетворительной.

6. Вывод разрешающего уравнения для линейно-упругого случая

В частном случае, когда материал нити ведет себя линейно-упруго, функция $f(\varepsilon)$ представляется в виде:

$$f(\mathbf{\varepsilon}) = EF\mathbf{\varepsilon},\tag{5}$$

где *Е* – модуль Юнга материала нити. Система уравнений (3) в этом случае значительно упрощается:

$$\begin{cases} \frac{\varepsilon_1}{\varepsilon_2} = \frac{1/2d_1\sqrt{d_1^2 + x^2}F_1 - S}{1/2d_2\sqrt{d_2^2 + x^2}F_2 - S}, \\ EF\varepsilon_0 = S. \end{cases}$$
(6)

233

Подставляя в левую часть равенства (5) выражения ε_1 и ε_2 на основании формул (4), получим простое уравнение для определения силы предварительного натяжения нити *S*:

$$\frac{\sqrt{d_1^2 + x^2} - x}{\sqrt{d_2^2 + x^2} - x} = \frac{1/2d_1\sqrt{d_1^2 + x^2}F_1 - S}{1/2d_2\sqrt{d_2^2 + x^2}F_2 - S}.$$
(7)

Решая его, находим S:

$$S = \frac{\sqrt{d_1^2 + x^2} + \sqrt{d_2^2 + x^2}}{2(d_2^2 - d_1^2)} \left(\frac{d_2^2}{d_1} \frac{\sqrt{d_1^2 + x^2}}{x + \sqrt{d_2^2 + x^2}} F_1 - \frac{d_1^2}{d_2} \frac{\sqrt{d_2^2 + x^2}}{x + \sqrt{d_1^2 + x^2}} F_2 \right).$$
(8)

7. Численные результаты

На основании вышеприведенных аппроксимаций диаграммы материала нити были рассчитаны значения силы предварительного натяжения. Результаты расчета приведены в табл. 1.

								. Tab	б <i>лица</i> 1
Функция	<i>L</i> , мм	$S_{_{3KC\Pi}}, H$	<i>d</i> ₁ , мм	<i>d</i> ₂ , мм	ε ₀ , мм	F_1 , H	F_1 , H	$f(\varepsilon_0)=S_{\text{reop}}, H$	$\Delta, \%$
Ряд Фурье	70	0,49	19,08	34,56	0,225	0.5	1	0,492	0,40
		0,98	10,58	20,04	0,689	0,5		0,967	1,32
	40	0,49	19,08	34,56	0,541	0,5	1	0,511	4,28
		0,98	10,58	20,04	1,218			0,977	0,30
$f(x) = c_1 e^x - c_2 x - c_3$	70	0,49	19,08	34,56	0,225	0,5	1	0,35	28,50
		0,98	10,58	20,04	0,689			0,798	8,50
	40	0,49	19,08	34,56	0,541	0,5	1	0,389	20,60
		0,98	10,58	20,04	1,218			0,784	20,00
$f(x) = c_1 \sqrt{x}$	70	0,49	19,08	34,56	0,225	0.5	1	0,54	10,20
		0,98	10,58	20,04	0,689	0,5		0,943	3,70
	40	0,49	19,08	34,56	0,541	0.5	1	0,56	4,30
		0,98	10,58	20,04	1,218	0,5		0,84	4,30

Данные для линейно-упругого случая представлены в табл. 2

Таблица 2												
$S_{_{3\kappa c \pi}}, H$	<i>d</i> ₁ , мм	<i>d</i> ₂ , мм	F_1 , H	F_1 , H	S _{reop} , H	Δ, %						
0,49	19,08	34,56	0.5	1	0,513	2,3						
0,98	10,58	20,04	0,5	1	0,967	1,3						

Все вычисления проводились с помощью программного комплекса MATHCAD.

Заключение

Как видно из полученных результатов (см. табл. 1), самой хорошей аппроксимацией оказалась аппроксимация рядом Фурье. Для этого случая мы имеем минимальную погрешность по сравнению с остальными случаями. Из табл. 2 следует, что формула (8) для линейного случая хорошо работает и для нелинейного поведения материала. Связано это с тем, что на каждом отрезке нелинейная диаграмма хорошо аппроксимируется линейной функцией. Действительно, раскладывая нелинейную функцию $f(\varepsilon)$ в окрестности точки ε_0 предварительного нагружения в степенной ряд, будем иметь

$$f(\varepsilon_0 + \varepsilon_i) = f(\varepsilon_0) + \frac{df(\varepsilon_0)}{d\varepsilon} \varepsilon_i + O(\varepsilon_i^2), \quad i = 1, 2.$$
(9)

Подставляя правую часть формулы (9) в левую часть первого уравнения системы (3), с точностью до малых величин второго порядка получим:

$$\frac{\varepsilon_1}{\varepsilon_2} = \frac{1/2d_1\sqrt{d_1^2 + x^2}F_1 - S}{1/2d_2\sqrt{d_2^2 + x^2}F_2 - S},$$

что в точности совпадает с уравнением (7).

Ценность формулы (8) состоит в том, что для определения силы предварительного натяжения эластичной структуры не нужно знать в явном виде диаграмму растяжения материала. Предложенный способ определения силы предварительного натяжения эластичной структуры может быть положен в основу конструкции простого прибора для соответствующих нужд медицинской практики.

Литература

1. *Гуляев, Ю.П*. Математические модели биомеханики в медицине / Ю.П. Гуляев, Л.Ю. Коссович. – Саратов: Изд-во Саратов. ун-та, 2001. – 48 с.

2. Кормен, Т. Алгоритмы: построение и анализ / Т. Кормен, Ч. Лейзерсон, Р. Ривест. – М.: МЦНМО, 2001. – 706 с.

[5.09.2006]

DETERMINING THE LONGITUDINAL FORCE IN ELASTIC STRUCTURES LOADED IN TENSION

Yu.P. Gulyaev

Equations for determining the prestress value in elastic structures loaded in tension, both for linear elastic and non-linear responses, are constructed. The values of prestress calculated using the above equations are in good agreement with the experimental results for rubber cords.