
15

UDC 539.3 DOI: 10.32326/1814-9146-2022-84-1-15-24

ONE SIMPLE CASE OF LUBRICATED LINE CONTACT
FOR DOUBLE-LAYERED ELASTIC SOLIDS*

© 2022 Kudish I.I.1, Volkov S.S.2, Aizikovich S.M.2, Ke L.3

1ILRIMA Consulting, Inc., Millersburg, Michigan, USA
2Don State Technical University, Rostov-on-Don, Russian Federation

3Tianjin University, Tianjin, China

fenix_rsu@mail.ru

Received by the Editor 06.01.2022

The main goal of this paper is to consider formulation and solution of a
lubrication problem based on the expressions for elastic surface displacements
derived asymptotically from an exact solution for a loaded double coated elastic
substrate which are valid within a certain region of the problem input parameters.
Therefore, a new relatively simple numerical model of the behavior of lubrication
parameters in a line lightly loaded contact of double coated elastic cylinders has
been developed. For simplicity materials and coatings of both cylinders are
considered identical. The main part of the elastic displacements of the contact surfaces
is represented by simple Winkler like contributions. The problem is reduced to a
numerical solution of a system of two transcendent equations. The formulas for
lubrication parameters such as distributions of contact pressure, gap, lubrication
film thickness, shear stress, coefficient of friction, and contact energy loss were
derived and used for specific calculations. Generally, compared to lubrication
parameters in the contact of rigid solids without coatings the effect of the double
coating resulted in reduced (up to 60% or more) contact pressure, increased contact
area and film thickness as well as some reduction of frictional forces and energy
losses. Some specific results for the obtained solutions are provided.

Keywords: line lightly loaded lubricated contacts, elastic double coatings,
asymptotic representations for elastic surface displacements, elastohydrodynamically
lubricated contacts.

Introduction

To increase the performance of machine parts and structural elements, protective
coatings are usually used. Coatings are able to increase the values of tribological
characteristics, reduce friction, protect against corrosion, erosion, temperature effects,
etc. There is a need for a theoretical understanding of the contact behavior of coated
structural members both in industry and science. In practice, coatings may represent various
structures: homogeneous, multi-layered or functionally graded. Dry contact of bodies with
homogeneous, functionally graded coatings with and without friction was considered
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in [1–5]. Multilayered coatings, in practice, are often created to achieve specified
characteristics, for example, to reduce wear [6] or to increase hardness [7]. In such cases,
two-layered coatings are of particular interest, since they are easier to create and can form
naturally, for example, when oxide films are formed or when lubricant components are
absorbed on the coating surface. Thus, the plane contact problem on indentation of a
bilayered (two-layered elastic coating coupled with a nondeformable substrate) was studied
in frictionless [8] and frictional [9] formulations. The wear of a two-layered coating
subjected for heating and friction is considered in [10]. Frictionless indentation and torsion
of two-layered coatings on an elastic substrate were studied in [11–13].

Another way to increase performance of machine parts is the use of lubricants in the
contacting units. So lubricants are widespread in the automotive industry and are used, in
particular, to increase the efficiency of internal combustion engines, because even small
decrease in energy losses multiplied by millions of car engines can be quite significant in
reducing fuel demand worldwide. Extending product life cycle of engines and reducing
emissions due to decreased wear of engine components is another desirable goal of engine
designers. Frictional losses in engines are associated with specific engine components
including piston ring-liner contacts, journal bearings, tappets etc. The major losses are
associated with piston rings (~40%) and skirts. Therefore, understanding tribological
characteristics of piston ring-cylinder liner contact and possible ways of reducing the
intensity of lubricated contacts may help in reducing frictional losses and increasing fuel
economy. The reciprocal motion of piston rings includes several regimes of lubrication set
by the linear velocity u and applied load P at a particular piston ring position and viscosity
lubricant . Near dead zones (where u  0), frictional losses depend primarily on the
nature of boundary lubrication and the formation of so-called tribolayers [14]. In such a
situation, the lubrication problem can be reduced to a squeeze flow problem [15]. However,
the main viscous energy losses are due to hydrodynamic regime of lubrication in the
central portion of piston movement cycle relatively far from the dead zones. In this regime,
viscous losses are associated with the specific distribution of pressure within the contact
zone, which depends on rheological parameters of lubricants and elastic parameters of the
solids in contact. Some understanding of the influence of lubricant additives making
lubricant rheology non-Newtonian is presented in [16]. In [17] the elastohydrodynamically
lubricated (EHL) model for a coated point contact was introduced. In the paper the
numerical results showed that hard coatings increase friction while soft coatings decrease
it. A similar problem for solids with multiple coatings (including some functionally graded
ones) has been considered numerically in [18]. Kudish et al. [19, 20] considered numerically
and asymptotically an EHL problem for line contacts with coated surfaces. The coatings
were made of different functionally graded elastic materials. The lubricated contact of a
half-plane with a coating under conditions of a non-Newtonian fluid is considered in [21].
Heavily loaded line EHL contacts with thin adsorbed soft layers was considered in [22].

In the present paper, we explore the possible advancements which can be made by
using coated solids. To simplify the problem it is considered that the rheology of the
lubrication fluid is Newtonian. More specifically, we consider how in some cases double
layered elastic coatings may improve such parameters as lubrication film thickness and
friction losses. We investigate the case when the elastic moduli of the coatings and substrate
are very different in magnitude while the contact pressure created in a lubricated contact
is relatively small to appreciably change lubricant viscosity.
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1. Main simplified relationships used in the problem formulation

Let us consider a plane problem for a lubricated contact of an infinite cylinder with a
half-space (see fig. 1). Both the cylinder and the half-space have attached to them relatively
thin elastic double coatings. For simplicity we will assume that the lubricant is a Newtonian
incompressible fluid with constant viscosity . The coordinate system is introduced in
such a way that the x – axis is directed along the lubricant flow and perpendicular to the
cylinder axis, the y – axis is directed along the cylinder axis, and the z – axis is directed
across the lubricant layer. The cylinder is separated from the surface of the half-space by
a continuous lubricant layer. The cylinder steadily rolls and slides in the direction of the
x – axis with speed u2 while the half-space moves in the same direction with speed u1.

The components of the lubricant velocity are represented by functions u(x, y, z),
v(x, y, z) and w(x, y, z). Due to this problem geometry we have
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Due to that the problem parameters are independent of the coordinate y. For a typical
line concentrated contact the gap between the contact surfaces is much smaller than the
contact length. Therefore, the simplified equations of the motion of such a fluid are as
follows [23, 24]
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where p is the contact pressure.
For an incompressible fluid the continuity equation has the form
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The no slip boundary conditions on the fluid speed u and no penetration of the fluid on w
at the solid boundaries are as follows
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Fig. 1. The general view of a lubricated contact
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where h(x) is the gap between contact surfaces. The boundary conditions imposed on w
are obtained based the fact that in concentrated contacts dh/dx << 1.

An accurate and precise description of surface normal and tangential displacements
for a double layered elastic solid loaded with a normal and tangential surface loads is
provided in [25]. We will assume that the substrate material occupying the lower subspace
has Young's modulus Es and Poisson's ratio s while the materials of the upper and
intermediate coatings have Young's modulus Ec and Ei and Poisson's ratios c and i,
respectively, while their thicknesses are hc and hi, respectively. However, the exact
expressions for the surface displacements for such elastic solids are very complex. An
asymptotic analysis of these expressions in a spectrum of various limiting cases has been
conducted in [25] which in some specific limiting cases resulted in a much simpler
relationships compared to the original ones. In this paper we will consider just one of such
cases of a lightly loaded contact charecterized by a Winkler–Full type relationships for
surface displacements U and W called in [25] as Case II, when
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where superscripts (i), (c), and (s) correspond to the materials of the intermediate and
upper coatings as well as the substrate, respectively, E and  are Young's modulus and
Poisson's ratio of the corresponding material.

Specifically, for surface displacements we will consider Case U1U4 for the tangential
displacement U
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and Case W2W7 for the normal displacement W
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where hc and hi are thicknesses of the upper and intermediate coatings, R is the effective
radius of a cylinder causing applied to the surfaces normal –p(x) and tangential xz(x)
stresses, and aH is a typical (Hertzian) half-length of a dry contact of elastic solids without

coatings, ,/2= )( )(
33

s
H ERPa    P is the load per unit length applied to the cylinder. Some

of the constants involved in the previous formulas are given below [25]
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For simplicity we will assume that the materials of both contact solids are identical
and the coating thicknesses of coatings on both solids are also the same, i.e. hc1 = hc2 = hc

and hi1 = hi2 = hi. Based on the above formulas the actual surface velocities of the solids
are

2.1,=,
2

)(
1)(,1=)( i

xh
xU

dx

d
uxv i

iii 













  (11)

That, finally, allows us to formulate the lubrication problem as follows (see [23, 24])
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where xi and xe are the contact inlet and exit point coordinates (xi is considered to be given
while xe needs to be determined from the problem solution), he is lubrication film thickness
at the exit point xe which is also determined from the problem solution, and R is the
effective curvature radius of the contact solids.

By introducing the following dimensionless variables typical for lightly loaded
lubricated contacts [23, 24]
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and omitting in the further consider ations primes at the dimensionless variables we obtain
the following problem in dimensionless variables
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where V and  are two given dimensionless parameters. Obviously, the differential
(Reynolds) equation can be analytically integrated one time. After that the problem can be
reduced to determining constants  and c from a system of two transcendent equations
which needs to be solved numerically using an iterative method analogous to Newton's
method.

The lubrication problem for solids with coatings made of different materials and of
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different thickness can be set up in a similar way. Moreover, the equations for the case
when one of the solids does not have coatings coincides with equations (14) in which the
dimensionless parameter  has to be replaced by /2. Therefore, the effect of the coatings
is diminished.

On the other hand, the problem described by equations (14) can be solved using the
regular perturbation method for  ~ 1 and V >> 1 presented in [23, 24]. Obviously, for
large V as V increases the problem solution approaches the solution of the corresponding
lubrication problem for rigid solids [23, 24]. This trend is clear from the numerical data
presented below. After the solution is obtain we can calculate the dimensionless friction
force F  = F/P (i.e. essentially the friction coefficient). Omitting the prime for the
dimensionless F we obtain
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Also, we can calculate the total energy loss E in the lubricated contact as follows
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The dimensionless value E introduced by the relationship E = Ea(u1 + u2)
2/4 in dimen-

sionless variables (13) has the form (prime is omitted)
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where v2 – v1 is determined in (15).

2. Some results for the lubrication problem

In this section, our goal is to illustrate the developed approach by a specific numerical
example. Specifically, we will take Ec =112 GPa, c = 0.32, Ei = 74 GPa, i = 0.34, Es =
= 200 GPa, s = 0.25, which are typical elastic parameters for titanium, duraluminum,
and steel, respectively. Also, it is assumed that the effective radius of contact solids R =
= 0.01125 m, the applied force P = 1.5.104 N/m, and the coating thicknesses are taken as
follows hc = 0.5.10–7 m and hi = 0.5.10–5 m. For this set of data all of the conditions (7)
and (9) for the validity of the used approximations for the surface displacements U and W
are satisfied. The lubrication regime is lightly loaded and, therefore, the lubricant viscosity
 can be considered independent of pressure and equal to the ambient viscosity a =
= 3.524.10–3 N.s/m2. The following results are obtained for fixed values of parameters
 = 1, s0 = 2 and varying values of the parameters  and .

Just notice, that for the case of rigid solids without coatings the dimensionless film
thickness r = 0.157 and dimensionless coordinate of the exit point cr = 0.170 (see [23, 24]).

The general trend of the solution of our problem compared to the solution of the
similar lubrication problem for rigid solids is as follows. As the dimensionless parameter
–2 = 3a(u1 + u2)/P increases the dimensionless exit film thickness  (see fig. 2a) and
exit coordinate c (see fig. 2b) monotonically increase remaining greater than the values of
r and cr for rigid solids without coatings, respectively, while the dimensionless energy
loss E (see fig. 3a) increases monotonically remaining lower than the energy loss Er in the
contact for rigid solids without coatings.



21

The relative friction force F/Fr behaves typical to the well known Stribeck curve (see
fig. 3b) which for relatively high values of –2 represents hydrodynamic lubrication regime
while for relatively moderate values of –2 it represents an elastohydrodynamic lubrication
regime. As –2 increases, the behavior of the minimum dimensionless gap )/( 2

min rr ch 
is almost identical to the graph of /r versus –2 (see fig. 2a). As –2 increases the pressure
distribution p(x) widens and, in general, gets lower than in the case of the corresponding
lubricated contact for rigid solids (see fig. 4).

Obviously, the variations of the exit film thickness , exit coordinate c, energy loss E,
and pressure p(x) with  compared to their counterparts for just rigid solids can be very

Fig. 2. The graph of the relative exit point:
a) film thickness /r versus –2; b) coordinate c/cr versus –2
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significant (up 60% or more) while the variation in the friction force F is within about 2%
of the one for the case of lubricated rigid solids (see fig. 2–4).

Closure

A new relatively simple numerical model of the behavior of lubrication parameters in a
line contact of double coated elastic cylinder with a half-space has been developed. The
main part of the elastic displacements of the contact surfaces is represented by a simple
Winkler-Fuss type like contributions. The problem is reduced to a numerical solution of a
system of two transcendent equations. The lubrication parameters such as contact pressure,
gap, minimum lubrication film thickness, friction force, and energy loss were determined.
Generally, the effect of the double coating resulted in significantly reduced (up to 60% or
more) contact pressure, increased contact area, and film thickness as well as a reduction of
the contact energy loss. The behavior of the friction force resembles the behavior of the
Stribeck curve. Some specific results for the obtained solutions are provided.
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ОДИН ПРОСТОЙ СЛУЧАЙ ЛИНЕЙНОГО КОНТАКТА ТЕЛ
 С ДВУХСЛОЙНЫМИ ПОКРЫТИЯМИ С УЧЕТОМ СМАЗКИ
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Рассмотрены постановка и решение задачи о контакте тел со смазкой на основе выраже-
ний для перемещений упругой поверхности, полученных асимптотически из точных пред-
ставлений для перемещений упругой полуплоскости с двухслойным покрытием. Асимпто-
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тические представления перемещений получены для определенной области входных
параметров задачи. С использованием этих представлений разработана новая относительно
простая численная модель оценки влияния параметров смазки на линейный легко нагружен-
ный контакт упругих цилиндров с двухслойным покрытием. Для простоты материалы и
покрытия контактирующих цилиндров считаются идентичными. Основной вклад упругих
перемещений поверхности покрытий контактирующих тел представлен простыми выра-
жениями, схожими с соотношениями Винклера. Задача сводится к численному решению
дифференциального уравнения относительно неизвестного давления с граничными усло-
виями, характеризующими отсутствие контактного давления на краях области контакта.
Уравнение содержит две неизвестные константы: толщину слоя смазки в точке выхода из
зоны контакта и координату точки выхода смазки из зоны контакта. Эти константы опре-
деляются итерационно из дополнительного интегрального условия и граничного условия на
производную от давления в точке выхода смазки из зоны контакта. Получены и применены
для численных расчетов формулы для основных параметров, характеризующих контакт тел
со смазкой, таких как толщина пленки смазки, силы трения, потери энергии и др. Показано,
что для рассмотренного случая, по сравнению со случаем контакта недеформируемых тел,
наличие двухслойного покрытия привело к снижению (более чем на 60%) контактного
давления, увеличению площади контакта и толщины пленки смазки, а также некоторому
снижению силы трения и потери энергии. При численном анализе были рассмотрены кон-
кретные материалы покрытий.

Ключевые слова: легко нагруженный контакт со смазкой, двухслойное упругое покры-
тие, асимптотические представления для смещений поверхности, упругогидродинамический
контакт со смазкой.


