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The study of the laws of contact interaction of hard and deformable impactors
with frozen soils is of great scientific and applied value. In solving such problems,
numerical methods are widely used. For numerically modeling the behavior of frozen
soil under dynamic loading, it is necessary to use models of soil media that adequately
describe their behavior at various negative temperatures, humidities and strain rates.
To identify the parameters of these models, experimental studies are required for
determining dynamic properties of soils at low temperatures.

The paper presents the results of experimental studies of dynamic deformation
of samples of frozen sand with humidities of 10% and 18%. Compression expe-
riments were conducted using a stand implementing the Kolsky method. Deformation
curves of frozen sand at a temperature of −18 °Ñ were obtained under uniaxial
stress conditions at various strain rates in the range of 400−2500 s−1. Diagrams of
strength of frozen sand under uniaxial compression as a function of strain rate are
constructed. The diagrams are linear for samples of different humidity in the studied
range of strain rates. Maximum stresses in frozen water-saturated sand are higher
than those in frozen sand of 10% humidity. With increasing strain rate, compressive
strength of water-saturated sand grows faster than that of sand with a moisture
content of 10%: at a strain rate of about 500 s−1, the stresses in frozen water-saturated
sand, at which the samples fail, are 1.5 times higher than those in the frozen sand with
a moisture content of 10%, and at a strain rate of 2500 s−1 they are 3 times as high.
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Introduction

The behavior of frozen soils under pressures not exceeding 20 MPa and strain rates of
up to 10−2 s−1 are well enough studied in experiments with uniaxial and triaxial compression
in [1−6]. Higher strain rates, of about 102−103 s−1, are implemented in experiments using
the split Hopkinson pressure bar (SHPB) system [2, 7−12], where deformation diagrams
for frozen soils (sand and clay) at temperatures up to  −28 °Ñ were obtained. The experimental
data is used for equipping mathematical models of elastoplastic behavior of soils with
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various approximations of yield surface and failure [4−12] as a function of strain rate, test
temperature etc. The development of such models is necessary for the numerical solution
of problems of impact interaction with frozen soils [2, 13]. However, the wide variety of
frozen soil media differing in their granulometric content, density, content of frozen and
liquid water and temperatures calls for conducting a large number of experimental
investigations to study the effect of those factors on the dynamic properties of frozen
soils.

The experimental setup

Soft soils were dynamically tested using an experimental stand implementing the
Kolsky method [14−17], that included a 20 mm-caliber gas gun, a complex of measuring
and registering tools and a set of 20mm-diameter split Hopkinson pressure bars of 1500-mm
long each for compression tests, made of aluminum alloy D16Ò.

The set was modified for tests at temperatures below 0 °Ñ. A special chamber of foam
plastic contained a specimen and the ends of pressure bars adjoining it. The chamber was
cooled with vaporized liquid nitrogen for several minutes to bring the temperature of the
ends of the pressure bars and of the specimen down to  −18 °Ñ (Fig. 1). The temperature at
the ends of the pressure bars was registered with a thermocouple.

To dynamically test frozen soils, specimens in the form of 10mm high and 16mm-
diameter cylinders were made of sand with the water content of 10% and 18% of the
mass of the sand. The specimens were prepared using drinking water. Sand with the water
content of 18% was practically fully saturated with water. The specimens were made of a
natural sandy mixture, sifted to remove particles bigger than 1 mm and smaller than 0.1
mm. The granulometric content of the sand was similar to that used in papers [18−20].
The density of the sand was 1750 kg/m3. The specimens were made by using special
cylindrical cartridges. Sand of required humidity was poured into a cartridge and compacted
up to a density of about 1920 kg/m3 for the sand of 10% humidity and 2050 kg/m3 for the
sand of 18% humidity. Then the specimens were frozen in a freezing chamber for 24 hours
at a temperature of  −18 °Ñ. After that, the specimens were removed from their cartridges
and held at a temperature of  −18 °Ñ for 24 hours more.

Fig. 1. General view of the stand for testing frozen soils (à) and of a frozen soil specimen (b)
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The experimental results

More than sixty experiments were done with sand of different humidities at a
temperature of −18 °Ñ. Strain rate in the experiments varied from 400 to 2600 s−1.
Characteristic deformation diagrams for sand of different humidities are presented in Fig. 2.
It can be seen that the strain rate in the experiment remains practically constant. The initial
parts of the stress-strain curves are close to linear. The stresses reach their maximum at a
deformation of 3−3.5%, followed by an abrupt drop of stresses with increasing strains,
testifying to failure of the soil specimens. Such behaviour is similar to those of rocks and
concretes, as well as of ice [17] under uniaxial compression. The maximal stress attained
in the experiments was taken as strength. It is noted that for the sand of 10% humidity
maximal stresses are considerably lower than that of the water-saturated sand. Thus, it can
be concluded that compression strength of frozen sand increases with its humidity.
Evidently, it is connected with the increased content of ice that binds sand particles and
the decreased free pore space. A similar phenomenon was observed for sand with a different
granulometric content and density [9].

Diagrams of strength as a function of strain rate are shown in Fig. 3.

Fig. 2. Characteristic curves of axial stress and strain rate as a function of strain
for water-saturated sand (à) and sand with 10% humidity (b), 1 − stress, 2 − strain rate
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Noticeable scatter is observed in the experimental data for both types of specimens
tested in similar conditions. The character of the deformation diagrams in the experiments
with similar conditions does not change, while the maximal stresses can differ up to 2−3 times.

Compression strength grows with strain rate in the specimens of water-saturated sand
and the sand of 10% humidity. Similar results were obtained in the strain-rate range of
400−1000 s−1 for sand with different granulometric composition and density [9].

The compression strength increases constantly with linear rising strain rates in the
studied strain rate range 400−2600 s−1 for the sands with different humidity. A similar type
of relations is also characteristic for freshwater ice [17]. For all the experimentally realized
strain rates, maximal stresses in frozen water-saturated sand are higher than those in frozen
sand of 10% humidity. In water-saturated sand, compression strength grows with strain
rate faster than in the sand of 10% humidity: at a strain rate of about 500 s−1, stresses in
the frozen water-saturated sand, at which specimens fail, are 1.5 times higher than those
in the frozen sand of 10% humidity, and at a strain rate of 2500 s−1 they are 3 times as
high.

Conclusion

As a result of dynamic tests of specimens of frozen sand with different humidity
(10% and 18%) it is found that uniaxial compression strength increases with the strain
rate and humidity of the specimens.
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Èññëåäîâàíèå çàêîíîìåðíîñòåé êîíòàêòíîãî âçàèìîäåéñòâèÿ æåñòêèõ è äåôîðìèðóå-
ìûõ óäàðíèêîâ ñ ìåðçëûìè ãðóíòàìè èìååò âàæíîå íàó÷íîå è ïðèêëàäíîå çíà÷åíèå. Ïðè
ðåøåíèè ïîäîáíûõ çàäà÷ øèðîêîå ïðèìåíåíèå  íàõîäÿò ÷èñëåííûå ìåòîäû. Äëÿ ÷èñëåííîãî
ìîäåëèðîâàíèÿ  ïîâåäåíèÿ çàìîðîæåííîãî ãðóíòà ïîä äåéñòâèåì äèíàìè÷åñêèõ íàãðóçîê
íåîáõîäèìî èñïîëüçîâàíèå ìîäåëåé ãðóíòîâûõ ñðåä, àäåêâàòíî îïèñûâàþùèõ èõ ïîâåäåíèå
ïðè ðàçëè÷íûõ îòðèöàòåëüíûõ òåìïåðàòóðàõ, âëàæíîñòÿõ è ñêîðîñòÿõ äåôîðìàöèè. Äëÿ
èäåíòèôèêàöèè ïàðàìåòðîâ ìîäåëåé íåîáõîäèìî ïðîâåäåíèå  ýêñïåðèìåíòàëüíûõ èññëåäî-
âàíèé äëÿ îïðåäåëåíèÿ äèíàìè÷åñêèõ ñâîéñòâ ãðóíòîâ ïðè îòðèöàòåëüíûõ òåìïåðàòóðàõ.

Ïðèâåäåíû ðåçóëüòàòû ýêñïåðèìåíòàëüíûõ èññëåäîâàíèé äèíàìè÷åñêîãî äåôîðìèðî-
âàíèÿ îáðàçöîâ èç çàìîðîæåííîãî ïåñêà âëàæíîñòüþ 10 è 18%. Ýêñïåðèìåíòû íà ñæàòèå
ïðîâîäèëèñü íà óñòàíîâêå, ðåàëèçóþùåé ìåòîä Êîëüñêîãî. Ïîëó÷åíû êðèâûå äåôîðìèðîâà-
íèÿ ìåðçëîãî ïåñêà ïðè òåìïåðàòóðå  −18 °Ñ â óñëîâèÿõ îäíîîñíîãî íàïðÿæåíèÿ ïðè ðàçëè÷-
íûõ ñêîðîñòÿõ äåôîðìàöèè â äèàïàçîíå 400−2500 ñ−1. Ïîñòðîåíû çàâèñèìîñòè ïðåäåëà  ïðî÷-
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íîñòè ìåðçëîãî ïåñêà ïðè îäíîîñíîì ñæàòèè îò ñêîðîñòè äåôîðìàöèè. Ýòè çàâèñèìîñòè â
èññëåäîâàííîì äèàïàçîíå ñêîðîñòåé äåôîðìàöèè  ëèíåéíû äëÿ îáðàçöîâ ðàçëè÷íîé âëàæ-
íîñòè.  Ìàêñèìàëüíûå íàïðÿæåíèÿ â ìåðçëîì âîäîíàñûùåííîì ïåñêå ïðåâûøàþò ìàêñè-
ìàëüíûå íàïðÿæåíèÿ â çàìîðîæåííîì ïåñêå 10%-íîé âëàæíîñòè. Ñ ðîñòîì ñêîðîñòè äåôîð-
ìàöèè ïðåäåë ïðî÷íîñòè íà ñæàòèå äëÿ âîäîíàñûùåííîãî ïåñêà ðàñòåò ñèëüíåå, ÷åì äëÿ
ïåñêà âëàæíîñòüþ 10%: ïðè ñêîðîñòè äåôîðìàöèè îêîëî 500 ñ−1 íàïðÿæåíèÿ â ìåðçëîì
âîäîíàñûùåííîì ïåñêå, ïðè êîòîðûõ ïðîèñõîäèò ðàçðóøåíèå îáðàçöîâ, ïðåâûøàþò àíàëî-
ãè÷íûå íàïðÿæåíèÿ â çàìîðîæåííîì ïåñêå ñ âëàæíîñòüþ 10% â 1,5 ðàçà, à ïðè ñêîðîñòè
äåôîðìàöèè 2500 ñ−1 − â 3 ðàçà.

Êëþ÷åâûå ñëîâà: ìåðçëûé ïåñîê, îäíîîñíîå ñæàòèå, ñêîðîñòü äåôîðìàöèè, ïðî÷íîñòü,
ìåòîä Êîëüñêîãî.


