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Metamaterials is the new class of materials which are able to show a desired behavior
at a macroscopic level. In the last years, properties of pantographic fabrics have
been studied in the metamaterial framework. These systems are made of two families
of orthogonal fibers, jointed in the intersection points by pivots. Such systems show
interesting mechanical properties. The fibers and the pivots react differently to strain.
In particular, bending and extension deformations involve only fibers (which are
straight in the reference configuration), whereas torsion involves pivots. Such meta-
materials is able to undergo large macroscopic deformation with small deformation
of its microstructure. Since it is able to store a large amount of energy also beyond
the elastic regime and it undergoes plastic deformation before rupture, it shows
high toughness. Furthermore, an advantageous strength to weight ratio is observed.
To predict the macroscopic behavior of these materials an efficient computational
discrete model is needed. In this work, we will present a new numerical study of 2D
pantographic fabric, in which its macroscopic behavior is modeled in terms of a
second gradient continuum theory obtained by means of a heuristic homogenization
procedure. In particular, we will consider a bi-axial extension test. We will discuss
the distribution of the internal stored energy and we will compare the results with
the uni-axial case.

Keywords: pantographic fabrics, deformations, bending, extension, torsion, heuristic
homogenization, gradient continuum theory, computational experiments.

Introduction

The recent development of rapid prototype techniques like 3D printing has enhanced the
design possibilities of new materials able to show a desired behavior at macroscopic level:
the so-called metamaterials [1, 2]). A remarkable example is the pantographic sheet proposed
in [3] which consists of two families of orthogonal fibers, jointed in the intersection points
by pivots. This system shows interesting mechanical properties. Indeed, this metamaterial
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is able to undergo large macroscopic deformation with small deformation of its
microstructure. Since it is able to store a large amount of energy also beyond the elastic
regime and it undergoes plastic deformation before rupture, it shows high toughness.
Furthermore, an advantageous strength to weight ratio is observed [3, 4], Although the
idea of such a microstructure is well-known (see examples of pantographic mechanism in
fibers or fabrics in [5−14] with the considered pantographic sheet it is possible to optimize
the geometrical and morphological properties of the microstructure to obtain the desired
overall mechanical behavior. A natural way to model the micro-structure of a pantographic
sheet is to consider fibers as beams and to introduce a simple model for the pivots able to
take into account their role during macroscopic shear deformations. Numerical results of
this kind of models can be found in  [15−17] On the other hand, in parallel to the design of
the micro-structure, a continuous theory able to forecast the macroscopic behavior of the
pantographic sheet is required. From the mathematical point of view, to find the continuum
homogenized limit model associated to a certain microscopic discrete model is a
complicated task that requires the employment of powerful mathematical tools (see for
instance [18−20]). In the case of pantographic sheet, macroscopic behavior is modeled in
terms of the second gradient theory [7, 21−24] obtained by heuristic homogenization (for
more details see also [25]).
However, a computational efficient discrete model based on the micro-structure can be
developed to forecast the macroscopic behavior of the pantographic sheet. Indeed, the
discrete Hencky-type model proposed in [15, 16, 26] yields compatible results with the
aforementioned continuum model but with an enhanced computational efficiency. One of
the most interesting perspectives of this kind of analysis is the study of rupture mechanism
in complex metamaterials (see also [27]). Currently, the research on pantographic
metamaterials has several interesting open problems. It is worth to mention the study of
the limit case of the inextensible orthogonal fibers, characterized by the possibility to
decompose the placement field in two vector fields each depending only on the arch
length along one family of fibers  [28−32]. Moreover, the analysis of imperfections in the
micro-structure, modeled as geometric randomly distributed defects, is of great practical
interest. Finally, the study of dynamical aspects involving contribution from higher-gradient
theory is still an open problem. In particular, it is of interest the observed difference with
respect to first gradient orthotropic laminae concerning the natural eigenfrequencies [33].

Formulation of the problem

Let us consider a pantographic sheet, i.e. a planar network of two families of orthogonal
fibers. The fibers are equally spaced and connected in the intersection points by elastic
pivots around a perpendicular axis with respect to the network plane. In order to introduce
the second gradient model, let us consider a continuous homogenized 2D elastic surface
obtained by the aforementioned micro-structure. This surface is characterized by a potential
energy U which depends on the deformation gradient tensor, F, and its gradient ∇F, both
evaluated along the fiber directions D1 and D2 [25]:
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with α taking values 1 and 2 for the two families of fibers and 
αα
be KK ,  and Kp being

material stiffnesses related to stretching, bending and shear deformation, respectively. Let
us remark that the first addend involves fibers' elongation along their own directions; in
the second addend the only contribution of the second gradient is to the Lagrangian
curvatures, namely the rates of change of the current tangent vectors to the fibers with
respect to arc length along the same fiber in the reference configuration; finally, in the
third addend the angle between the two different families of fibers appears.

Numerical simulation

The behavior of the system under a bi-axial elongation test is studied by means of Finite
Elements Method. The equilibrium shapes are obtained by seeking the configuration of
the system that minimize the aforementioned energy U and which satisfies the associated
boundary conditions. The particular system under analysis is a square with a 178 cm long
edge; each vertex is chamfered in order to have a shortest edge of 42 mm (see the black
solid lines in fig. 1). In the reference configurations, the two fibers are disposed along x-
and y-axes. Material constant employed are Ke = 1.34×105 Nm−1, Kb = 1.92×10−2 Nm
and Kp = 1.59×102 Nm−1. The system undergoes a uniform increasing displacement to the
shortest chamfered edges along the orthogonal direction with respect to them. The resulting
equilibrium shape, in the case of a displacement of 42 mm, is plotted in fig. 1.

In such a configuration, the strain energy density is plotted in the colored map in the left
panel whereas the shear deformation is given in the right panel. Grey lines indicate local
orientation of fibers.
The resultant reaction magnitude versus the imposed displacement on one of the loaded
edges are displayed in fig. 2.
Figure 3, instead, shows the distribution of the reaction components along the loaded end
in the orthogonal (R1) and parallel direction (R2).

Fig. 1. Biaxial test: Equilibrium shape. The colors indicate the energy density on the left panel,
and the shear deformation on the right panel. Black solid lines indicate the reference

configuration. Grey solid lines indicate some material lines in the present configuration

−0.10  −0.05      0       0,05    0,10

0

−0,04

−0,08

−0,12

0,04

0,08

0,12 ×104

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0

−0.10  −0.05     0       0,05    0,10

0

−0,04

−0,08

−0,12

0,04

0,08

0,12

1.0

0.5

0

−1.0

−0.5



405

The total reaction is mostly linear for a huge deformation range. Furthermore, stress is
clearly localized at the edges end points, namely where the displacement is imposed, as it
is observed in the uni-axial case.

Conclusions

In this work, we have analyzed the specific mechanical behavior of a particular class of
metamaterials called pantographic sheets. This metamaterial exhibits a micro-structure
characterized by both a high contrast ratio between bending and extensional stiffness,
while its macroscopic behavior shows a high contrasted gradient of displacement in the
axial and transverse direction. Another source of anisotropy is given by the presence of
two preferred material directions of a high extensional stiffness that give rise to an
orthotropic material. This complex microstructure produces the onset of internal boundary
layers where gradients of deformation come out. It is therefore useful to adopt generalized
continuum theory in order to have a satisfactory predictive power without unpractical
computational costs (as the ones required by employing first gradient Cauchy models).
New numerical simulations on a 2D second gradient non-linear continuum model allowing
for planar motion only have been shown and discussed. By means of Finite Elements
Method, in particular, we have analyzed the behavior of a pantographic sheet undergoing
a bi-axial extension deformation. Like in the uni-axial case, the internal stored energy is
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Fig. 3. Distributions of the reaction on one of the shortest edges along the normal (R1)
and tangent direction (R2)
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mostly concentrated in the clamping edges corners with a uniform distribution around the
sample center. The main difference with the uni-axial case is observed in the distribution
of shear deformation energy that vanishes in the central region due to the symmetry of the
test.
Since pantographic sheets can describe plates and shell characterized by additional degree
of freedom (as discussed for instance in [34−38]) it is possible to consider applications of
this analysis to this framework. Indeed, like shell or plate, pantographic sheets are flexible
and thin while the main difference is in its flexibility in case of shear deformations.
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ÎÏÈÑÀÍÈÅ ÏÀÍÒÎÃÐÀÔÈ×ÅÑÊÈÕ ËÈÑÒÎÂ
Ñ ÏÎÌÎÙÜÞ ×ÈÑËÅÍÍÛÕ ÝÊÑÏÅÐÈÌÅÍÒÎÂ

Ñêåððàòî Ä.1, Åðåìååâà È.À.Æ.1, Ëàóäàòî Ì.1,  Ãèîðãèî È.1, Ìàðêîâ È.Ï.2

1Ìåæäóíàðîäíûé èññëåäîâàòåëüñêèé öåíòð ìàòåìàòèêè è ìåõàíèêè ñëîæíûõ ñèñòåì,
óíèâåðñèòåò Ë′Àêóèëà, Ë′Àêóèëà, Èòàëèÿ

2Íàó÷íî-èññëåäîâàòåëüñêèé èíñòèòóò ìåõàíèêè Íàöèîíàëüíîãî èññëåäîâàòåëüñêîãî
Íèæåãîðîäñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà èì. Í.È. Ëîáà÷åâñêîãî,

Íèæíèé Íîâãîðîä, Ðîññèéñêàÿ Ôåäåðàöèÿ

Ìåòàìàòåðèàëû ÿâëÿþòñÿ íîâûì âèäîì ìàòåðèàëîâ, äåìîíñòðèðóþùèõ æåëàåìîå ïî-
âåäåíèå íà ìàêðîñêîïè÷åñêîì óðîâíå. Â ïîñëåäíèå ãîäû ñâîéñòâà ïàíòîãðàôè÷åñêèõ ñòðóê-
òóð èçó÷àëèñü c òî÷êè çðåíèÿ ìåòàìàòåðèàëîâ. Ïîäîáíûå ñèñòåìû ñîñòîÿò èç äâóõ ñåìåéñòâ
îðòîãîíàëüíûõ âîëîêîí, ñîåäèíåííûõ â òî÷êàõ ïåðåñå÷åíèÿ ñ ïîìîùüþ øàðíèðîâ. Ýòè ñèñ-
òåìû îáëàäàþò èíòåðåñíûìè ìåõàíè÷åñêèìè ñâîéñòâàìè. Âîëîêíà è øàðíèðû ïî-ðàçíîìó
ðåàãèðóþò íà äåôîðìàöèè. Â ÷àñòíîñòè, äåôîðìàöèè èçãèáà è ðàñòÿæåíèÿ çàòðàãèâàþò òîëüêî
âîëîêíà (òàê êàê îíè ÿâëÿþòñÿ ïðÿìûìè â ðåôåðåíñíîé êîíôèãóðàöèè), òîãäà êàê êðó÷åíèå
çàòðàãèâàåò øàðíèðû. Ïîäîáíûå ìåòàìàòåðèàëû ñïîñîáíû ïðåòåðïåâàòü áîëüøèå ìàêðî-
ñêîïè÷åñêèå äåôîðìàöèè ñ ìàëûìè äåôîðìàöèÿìè ñâîåé ìèêðîñòðóêòóðû. Ïîñêîëüêó òà-
êèå ìàòåðèàëû ñïîñîáíû íàêàïëèâàòü áîëüøîå êîëè÷åñòâî ýíåðãèè òàêæå çà ïðåäåëàìè óï-
ðóãîãî äåôîðìèðîâàíèÿ è ïîäâåðãàþòñÿ ïëàñòè÷åñêîé äåôîðìàöèè ïåðåä ðàçðûâîì, îíè äå-
ìîíñòðèðóþò âûñîêóþ óäàðíóþ âÿçêîñòü. Êðîìå òîãî, ñëåäóåò îòìåòèòü èõ âûñîêóþ óäåëü-
íóþ ïðî÷íîñòü. Äëÿ òîãî ÷òîáû ïðîãíîçèðîâàòü ìàêðîñêîïè÷åñêîå ïîâåäåíèå ïîäîáíûõ ìà-
òåðèàëîâ, òðåáóåòñÿ ýôôåêòèâíàÿ ÷èñëåííàÿ äèñêðåòíàÿ ìîäåëü. Ïðåäñòàâëåí íîâûé ÷èñ-
ëåííûé àíàëèç äâóõìåðíîé ïàíòîãðàôè÷åñêîé ñòðóêòóðû, ìàêðîñêîïè÷åñêîå ïîâåäåíèå êî-
òîðîé ìîäåëèðóåòñÿ â òåðìèíàõ òåîðèè êîíòèíóóìà ñî âòîðûìè ãðàäèåíòàìè, ïîëó÷åííîé ñ
ïîìîùüþ ýâðèñòè÷åñêîé ïðîöåäóðû óñðåäíåíèÿ. Â ÷àñòíîñòè, ðàññìîòðåí ïðèìåð äâóõ-
îñíîãî ðàñòÿæåíèÿ. Îáñóæäàåòñÿ ðàñïðåäåëåíèå âíóòðåííåé íàêîïëåííîé ýíåðãèè è ïðîâî-
äèòñÿ ñðàâíåíèå ðåçóëüòàòîâ ñ îäíîîñíûì ñëó÷àåì.

Êëþ÷åâûå ñëîâà: ïàíòîãðàôè÷åñêèå òêàíè, äåôîðìàöèè, èçãèá, ðàñòÿæåíèå, êðó÷åíèå,
ãðàäèåíòíàÿ êîíòèíóàëüíàÿ òåîðèÿ, âû÷èñëèòåëüíûå ýêñïåðèìåíòû.
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