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Irreversible phenomena such as corrosion or micro-cracks formation influence the
load bearing capacity of a material. We will present a mechanical modelling, based
on a variational approach, for dissipative phenomena in damaged strain gradient
materials. In particular, we will consider the case of an evolving microstructure due
to damage progression. Strain gradient regularization is adopted to model damage
and we aim at studying quasi-static damage propagation in a 2D geometrically linear
isotropic continuum by means of a variational inequality formulation. The novelty
of this analysis is in the use of the total deformation energy as a functional, whose
surface density depends upon the strain gradient. The total deformation energy
functional includes a contribution due to the dissipation energy, a contribution due
to the elastically stored energy and a contribution due to the work made by generalized
forces onto the system. The dissipation energy does not depend upon the gradient
or the Laplacian of the damage field. The non-locality is given by the dependence
of the elastic strain energy density upon the second gradient of the displacement.
Both first and second gradient elastic moduli are assumed to depend upon the scalar
damage field. Results from numerical simulations will be presented and the crucial
role of the inclusion of higher gradient terms in the energy will be discussed.

Keywords: mechanical modeling, variational approach, damage, gradient materials,
numerical simulations, frames.

Introduction

The theory of damaged materials is concerned with the modelling of those dissipative
phenomena, as corrosion and micro-cracks formation, which influence the load bearing
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capacity of a material. The idea that continuum modelling is the most feasible approach to
deal with such problem is spread in literature [1-8]. In order to account for the
aforementioned irreversible phenomena, it is customary to complement the kinematics of
the continuous system, which is usually given by the displacement function, with an
additional field, which stands for the state of degradation. Such field, which is to be
referred to in what follows as the damage field, usually ranges from O to 1. This last two
values stand, respectively, for the material's undamaged state and its failiure. In this
presentation, damage field is assumed to be entropic, with the idea that such field is
monotonic in time and healing is not to be contemplated. It is well-known that, when
dealing with the classical Cauchy theory of elasticity, the presence of localized deformations,
which are very often preferential from an energetic point of view, can be witnessed. Such
localized deformations, which can not be handled by a model without an internal length
controlling the size of boundary layers, lead unavoidably to mesh dependent simulations.
Moreover, the size of boundary layers is a material characteristic and in the framework of
continuum mechanics it is necessary, therefore, to introduce a characteristic length in the
model to penalize those deformations characterized by a strong concentration. Starting
from these considerations, a moltitude of non-local damage models have been proposed
in the literature. In damage gradient models, and in particular in phase-field models, the
internal energy is assumed to depend upon the damage first gradient [9—12]. There exist
strong evidences, e.g. in Andrieux and Lorentz [13], that a regularization through the
introduction of the gradient of damage allows to overcome issues related to localization
and mesh-dependency. Herein, following some of our previous works [14—17], we analyze
the possibility of regularizing the problem by including in the strain energy density a
contribution due to the strain gradient. Being easy to motivate from the physical point of
view, it is not unexpected that the idea of non-locality of damage encoded in the
displacement field (in particular, by means of its second spatial derivative) is already
present in the literature (see [18—20]). Indeed, it is possible to model a damaged material,
for any loading stage, as a microstructured material, where the damage can be responsible
of diminishing or emphasizing the material characteristic length. Furthermore, the relation
between the microstructure of elastic materials and its non-negligible macroscopic effects
has been extensively studied during the 60's [21-26] (even if higher gradient continua
were known at least in 1800s, see [27-29]) where strain gradient models are a customary
choice [30-37]. Athough a common critic to variational principles is their impossibility to
describe non-conservative phenomena and, as a consequence, to model dissipation, it is
possible to find in the literature several applications of variational formulations based on
the Extended Rayleigh — Hamilton Principle to a wide class of dissipative phenomena.
Moreover, already in 1948 Hill [38] proposed a formulation based on a variational
inequality, which is known as maximum plastic work [39]. Further efforts aimed at
developing a variational formulation of damage gradient models have been made in [7,
40—44]. Starting from these results, in this paper, as in [ 14—17], strain gradient regularization
is adopted to model damage and we aim at studying quasi-static damage propagation in a
2D geometrically linear isotropic continuum by means of a variational inequality
formulation. The novelty of this analysis is in the use of the total deformation energy as a
functional, whose surface density depends upon the strain gradient rather than Laplacian
and/or gradient of the damage field. In this way, Karush — Kuhn — Tucker (KKT) conditions
describing the damage evolution and the classical (generalized) balance equations can be
derived. In particular, the total deformation energy functional includes not only a
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contribution due to the elastically stored energy and a contribution due to the work made
by external (generalized) forces onto the system, but also a contribution due to the
dissipation energy. The dissipation energy does not depend upon the gradient or the
Laplacian of the damage field; the non-locality is given by the dependence of the elastic
strain energy density upon the second gradient of the displacement. Both first and second
gradient elastic moduli are assumed to depend upon the scalar damage field. The ratio
between these second and first gradient constitutive coefficients gives, roughly speaking,
the desired squared length scale of the material. Usually, the first gradient elastic coefficients
(the Lamé constants) are assumed to decrease with damage and to be zero at the failure
point, when damage is equal to one. On the one hand, in [14—17] the second gradient
elastic coefficients have been assumed to increase with damage, because damage has
been assumed to emphasize the microstructure and, hence, also the characteristic length
scale of the material. On the other hand, in this paper we are in the context of fracture
mechanics and we are are going to consider the case where almost no elastic potential
energy is stored in the fracture region. Thus, also the second gradient elastic coefficients
are here assumed to decrease with damage and to be zero at the failure point, when damage
is equal to one. As we stated above, the model is presented and solved in a geometrically
linear setting for an isotropic 2D body, even if further generalizations in this respect, like
the inclusion of anisotropy and 3D geometries, and the introduction of tension/compression
damage criteria based upon strain invariants are achievable without any relevant conceptual
challenge. We further expect this formulation, if properly adapted to account for plastic
effects (see for instance Reddy [45,46] and [14, 15]), to be suitable to study ductile fracture.
The outcome of our investigation is that the energy method employed herein for the study
of quasi-static propagation of brittle fracture in the setting of strain gradient modelling,
with the damage field being just a local variable, is able to handle damage initiation and
propagation, with the microstructure eventually evolving as a consequence of that, in an
effective and efficient way.

Variational formulation of the problem

Let us introduce the kinematic fields
u:(R*2%,[0,7]) > R?,

which is the displacement function (being ¥ the reference shape of the body and 7 the
time horizon), and the damage function

o: (R*2%,[0,7]) — [0, 1].
As healing is not considered here, we assume that
» =0,
where dot represents time derivative. We now adopt the so-called maximum energy release
rate variational principle for dissipative systems, which reads as
de(u,,u,®) < oe(u, m,v,B) for all v and for all § > 0,

with de(u, , du, 0m) being the functional derivative of € along the direction (du, dw) in
(u, ®), and € being the total energy functional. Such functional, in the quasi-static case
that we consider here (no dependence upon the rate of any kinematic quantity), reads as
the sum of two additive contributions: the recoverable potential energy, given by the
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difference between the internal stored strain energy L U,(G,VG,®)dA and the work

done by (generalized) external actions b™ (bulk force), m™ (bulk double force), T
(traction, i.e. line force), 7*(line double force), and £ (point force)

[[U.(G.VG,0) = b™u—m™Vuldd— [[t™u+7[(Viynllds — [ fu
® 0% 20%
and the dissipation energy

As for simplicity we are considering a 2D isotropic homogenous elastic medium for what
concerns the recoverable part of the energy, we have

1 B
U,(G,VG,w) = ZHGlzz + EA’(GII +Gy, )2 + “(Glzl + G222) + 5(G121,1 + G222,2) +

+2A(Gh + Gl o)+ [% —-B+C+ ZDJ (Gl, +Gy )+

+(A+B- 2C)(G121,1G122,2 + G122,1G222,2) +
+(—44+2B-4D)(G}, ,Gy, + G}y, Gl ) +

A B
+ [_ 575 +C+ 2DJ(G121,2G222,2 + G121,1G222,1)a

where comma followed by an index represents the spatial derivative with respect to the
indexed direction, with L and A being the standard Lame coefficients and 4, B, C, D
being higher gradient constitutive coefficients. For simplicity, the following linear
dependence of such coefficients upon damage is postulated for the Lamé coefficients

A=hg(1-0), n=p,(l-0)
and for the higher gradient constitutive coefficients
A=4,(1+nw), B=B,(1+nw), C=C,(1+nw), D=D,1+nw), neR.
Clearly, if dw = 0 is considered in the maximum energy release rate, the standard stationarity
principle can be recovered, as no dissipation is entailed by such condition, i.e.
oe(u,®,du,d5m) =0

which, after a sequence of integration by parts, gives the following standard internal
equilibrium equations using the Einstein summation convention

(Sij — T )’j +b™ —m™ =0 forall Xe B

i .
with
_ou ou
0T an 0 ik T
oG G

being these last two quantities, respectively, the Piola second-order stress tensor and the
third-order hyper-stress tensor. Clearly, as the integration by parts proceeds, new boundary
terms emerge and give, together with the initially present boundary terms, the boundary
conditions (for more details see [35, 47]).
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Exploiting the maximum energy release rate principle in its general form, i.e. for general
admissible variations, after some standard localization arguments, the following Karush-
Kuhn-Tucker conditions for damage mechanics can be derived (for a compact notation,
the addition of the recoverable energy density with the dissipation energy density is denoted
with U)

Z—U60=Of0rallXe%.

®
Clearly, as ® has been assumed to be monotonically increasing in time, we have that

U 0y éi=0forall X e ®.
0w

Such condition is implemented in a solution algorithm in the following straightforward
manner. First, the damage threshold ® is defined as

_ Ay +2 A
o(X,1) = OT“O(“lz,l + ”52) + 2%“1,2”2,1 + %(”122 + “12,1)270“1,1“2,2 -

A

B C
0 0 0
_”7(”12,22 ‘H’;,n) _”7(%2,11 + ”3,22) _”T(ulz,lz + ”5,12) -

D,
0
—2n A (1) 11Uy 1 + Uy 5oty 15) =

B,-C,+ 4,
—-n i (ty 1114y 59 + Uy 11Uy 50) =

By—4,-D,
=2 (U 1yl | F U ol 1)
i L2l 11 U 20U 15 ),

being the solution of
a—U(G,VG,E(G,VG)) =0.
oo

Then, the following iterative procedure is considered, where the index represents the
time discretization

u(X,0)=uy(X)=0forall X e B, o(X,0)=w,=0forall X €,

u; =arg min_ &(u,0,),
u:B—->R

o; =max (a(G,,VG)),0, ).
Numerical results

We now show some numerical results obtained by means of the presented method.
The algorithm which has been described sinthetically above has been implemented by
means of the software LiveLink for connecting Matlab (loop implementation) and Comsol
(finite element minimization routine). A square frame (it is possible to distinguish two
boundaries, an internal one of size 0.0178x0.078 m and an external one 0.02 mx0.02 m)
is subject to the following boundary conditions: the bottom external side is forced to have
a vanishing displacement in the vertical direction, while the upper external side has a
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vertical prescribed displacement toward the bottom. The other boundaries are free. The
results of the analysis are plotted in Fig. 1-4.
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Conclusions

In this paper we have shortly presented a variational approach for the mechanical modelling
of dissipative phenomena in materials with evolving microstructure. Not only the load
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bearing capacity of the materiali is obviously influenced by damage progression, but also
its microstructure is affected. Some numerical simulations have been finally presented to
give an idea of the effectiveness of the proposed approach. Indeed, without the inclusion
of higher gradient terms, the previously shown simulations would exhibit a mesh-dependent
strain (and, subsequently, damage) concentration in the four internal corners of the
considered frame.
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BAPHAILIMOHHBIN MOIXO/ K T'PAIMEHTHOM MEXAHUKE
MOBPEJKIEHHOI CPEJBI C TPUMEHEHUEM K CKATBIM PAMAM

Bapkuesn E.", Ilaaunam JI.'2, Moxun U.A.%, XKeraos I[.B.4, I'puropnesn M.B.*

' Mearcoynapoonsiii uccnedoeamensckuil yenmp MamemMamuxu u MexanuKiL CLONCHbIX CUCTIEM,
yuusepcumem JI'Axyuna, J1’Axyuna, Umanus
2Omoen cmpyxmypnoti u 2eomexnuyeckoii unicenepuu, Pumckuii yuusepcumem
Jla Canuenya, Pum, Umanus
*@axynemem unocenepuu, Meucoynapoousiii menemamuueckuti yuusepcumem Uninettuno,
Pum, Umanus
*Hayuno-uccnedosamenvcuii uncmumym mexanuxu Hayuonansnozo ucciedosamenpckozo
Huoicecopoockoeo cocydapcmeennozo ynusepcumema um. H.HU. Jlobauesckoeo,
Huoscnuii Hoszopoo, Poccuiickas @edepayus

HeoOparumble siBIeHUSI, TaKue KaK KOPPO3Hsl WIIH 00pa30BaHHE MUKPOTPEILHH, BIMSIIOT Ha
HECYIIYIO CIIOCOOHOCTh Marepuana. J{Jisi TUCCUITaTUBHBIX SIBICHUI B MOBPEXKICHHBIX TPaIHEHT-
HBIX MaTepHaiax MpeCTaBICHO MOJICIMPOBAHIE, OCHOBAHHOE Ha BAPHALIOHHOM rozixoze. B gact-
HOCTH, PACCMOTPEH CITy4ail pa3BUTHsI MUKPOCTPYKTYPBI, BHI3BAHHOM Pa3BUTHEM MOBPEIKICHHOCTH.
JUsst MOZICTUPOBAHHMST IOBPEIKICHHOCTH HCIIOIB3YETCs TPAJAMCHTHAS peryssipusanus. M3ydaercs
KBa3UCTATUUECKOE PA3BUTHE TOBPEKICHHOCTH B JIBYXMEPHOM T€OMETPHUYECCKU JIMHEHHOM H30-
TPOITHOM KOHTHHYYME Ha OCHOBE BAPHALMOHHOTO HepaBeHCTBA. HOBM3HA TaKOro aHam3a 3aKITko-
YaeTCs B UCTIONB30BAHHH TTOTHOM dHEPruu AehopManuu Kak GyHKIMOHAIA, TOBEPXHOCTHAS IIJI0T-
HOCTBH KOTOPOTO 3aBHCHT OT rpaaueHTta aehopmarmi. OyHKIHOHAT HOIHOW sHeprun qedopma-
I[MU BKJIFOYACT B ce0sI COCTABIISIONINE, 00YCIIOBICHHBIC SHEPTHEil IUCCUIIALINHY, YIIPYTO-HAKOILICH-
HOM BHEpTrHei, a TakKe paboToM, COBEPIICHHOH 0000IIEHHBIMHI CHUIIAMH HaJl CHCTEMO. DHeprus
JIMCCHIIAIINY HE 3aBHCUT OT IPaIMEHTA WK JIAIJIaCHaHa MOJIsl MOBPEXICHHOCTH. HenokanbHOCTh
00yCIIOBIICHA 3aBHCHMOCTBIO TUIOTHOCTH 3HEPTHU YIPYTO#l 1edopManin OT BTOPOro TpajieHTa
nepemereHnit. [longpazymeBaeTcsi, YT0 MOIYIIH YIIPYTrOCTH TIEPBOTO M BTOPOTO TPAJUEHTOB 3aBH-
CSIT OT CKAJSIPHOTO TOJTS TOBPEXKACHHOCTH. [IpecTaBIeHbl pe3yibTaThl 4UCICHHOTO MOICITHPOBa-
Hust. OOCyKIeHa KITIOUeBast pojib yduera B (DYHKIIMOHAJIE SHEPTUH IPAJUEHTHBIX YJICHOB BBICIIIHX
TIOPSI/IKOB.

Kntoueswvie cnosa: MexaHU4ecKoe MOJCIINPOBAHUEC, BapI/IaI_II/IOHHHﬁ TOAXO0M, MOBPEKIACHHOCTD,
TPaIUCHTHBIC MaTCpUabl, YUCICHHOC MOACINPOBAHUE, PAMBI.
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