УДК 622.235.534

МОДЕЛИРОВАНИЕ ДЕЙСТВИЯ ГАЗОКУМУЛЯТИВНЫХ ЗАРЯДОВ НА ПРЕГРАДУ

М.Х. Абузяров, А.В. Кочетков, С.В. Крылов, Е.В. Цветкова

Нижний Новгород

Газокумулятивные заряды находят применение в различных областях науки и техники. Так, например, они используются для разрушения тонкостенных элементов конструкций [1], для разгона компактных тел до сверхвысоких скоростей [2] и т.д. Изучение процессов, происходящих при детонации газокумулятивных зарядов, производилось ранее аналитическими и экспериментальными методами [3]. Однако, в силу ограниченности возможностей как аналитических, так и экспериментальных подходов, многие особенности протекающих процессов остаются невыясненными. Современный уровень развития численных методов позволяет достаточно успешно решать сложные нелинейные газодинамические задачи, включая газокумулятивные.

Математическая постановка задачи

Для описания двумерных процессов динамического деформирования используются уравнения механики сплошных сред в виде [4]:

$$\rho_{,t} + (\rho u)_{,r} + (\rho v)_{,z} = -\gamma \rho u / r,$$

$$(\rho u)_{,t} + (\rho u^{2} + p - S_{rr})_{,r} + (\rho u v - S_{rz})_{,z} = \gamma (2S_{rr} + S_{zz} - \rho u^{2}) / r,$$

$$(\rho v)_{,t} + (\rho v u - S_{zr})_{,r} + (\rho v^{2} + p - S_{zz})_{,z} = \gamma (S_{zr} - \rho v u) / r,$$

168

Настоящая статья посвящена численному моделированию процессов, возникающих при детонации П-образных кумулятивных зарядов небольшого удлинения и их воздействия на стальную преграду. Постановка задачи (рис. 1) соответствует условиям проведения экспериментальных исследований [1]. В силу симметрии, рассматривается полуплоскость области определения задачи.

В первой части работы в плоской постановке изучаются процессы, возникающие при детонации и после ее окончания внутри и вне различных зарядов. Во второй части в плоской и осесимметричной постановках исследуются процессы взаимодействия образующихся продуктов взрыва (ПВ) со стальной преградой, помещенной на грунтовое (песчаное) основание.

$$e_{,t} + ((e + p - S_{rr})u - S_{rz}v)_{,r} + ((e + p - S_{zz})v - S_{rz}u)_{,z} = \gamma ((S_{rr} - e - p)u + S_{rz}v)/r,$$

$$S_{rr,t} + uS_{rr,r} + vS_{rr,z} - S_{rz}(u,_{,z} - v,_{,r}) + \lambda S_{rr} - 2/3\mu(2u,_{,r} - v,_{,z}) = -\gamma 2/3\mu u/r,$$

$$S_{zz,t} + uS_{zz,r} + vS_{zz,z} - S_{rz}(v,_{,r} - u,_{,z}) + \lambda S_{zz} - 2/3\mu(2v,_{,z} - u,_{,r}) = -\gamma 2/3\mu u/r,$$

$$S_{rz,t} + uS_{rz,r} + vS_{rz,z} + (S_{rr} - S_{zz})(u,_{,z} - v,_{,r})/2 + \lambda S_{rz} - \mu(u,_{,z} + v,_{,r}) = 0,$$
 (1)

где p – давление; ρ – плотность; u, v – компоненты скорости по осям r и z соответственно; e – полная удельная энергия; S_{rr}, S_{zz}, S_{rz} – компоненты девиатора тензора напряжений; μ – модуль сдвига; γ – параметр, равный 0 для плоской задачи, 1 – для осесимметричной. Параметр λ = 0 при упругом деформировании. Индекс после запятой означает дифференцирование по соответствующей переменной. Система уравнений (1) замыкается уравнениями состояния с соответствующими параметрами. Для воздуха и продуктов детонации

$$S_{rr} = S_{zz} = S_{rz} = 0, \quad e - \rho(u^2 + \upsilon^2)/2 = p/(\chi - 1).$$
 (2)

В силу близости термодинамических свойств воздуха и продуктов детонации (ПД) и трудностей выделения границы воздух–ПД, показатель адиабаты χ – переменный. Зависимость χ от ρ имеет вид:

$$\chi = 1,25 + 1,13 \,\rho/\rho_{\rm BB} \,, \tag{3}$$

где $\rho_{\rm BB}$ – плотность взрывчатого вещества (BB).

Для описания процессов в плотных сжимаемых средах (металл, грунт) применяется [4] баротропное уравнение состояния вида $p = p(\rho)$, позволяющее избежать интегрирования уравнения сохранения энергии. Для металлической пластины плотностью ρ_0 это будет уравнение состояния идеального упругопластического тела

$$p = K\varepsilon, \tag{4}$$

где K – модуль объемного сжатия, $\varepsilon = 1 - \rho_0 / \rho$ – объемная деформация. Критерием перехода из упругого напряженно-деформированного состояния в пластическое является условие текучести Мизеса

$$J_2 = \frac{1}{2} S_{ij} S_{ij} = \frac{1}{3} \sigma_T^2.$$
 (5)

где J_2 – второй инвариант девиатора тензора напряжений S_{ii} , σ_T – предел текучести.

Для описания деформирования грунтового основания используется модель С.С. Григоряна, учитывающая нелинейность и необратимость диаграммы объемного сжатия:

$$p = \begin{cases} f_n(\rho), & dp/dt > 0, \\ f_p(\rho, \rho^*), & dp/dt \le 0. \end{cases}$$
(6)

Здесь ρ^* – максимальная плотность, а $p^* = f_n(\rho^*)$ – соответствующее ей максимальное давление, до которого была сжата рассматриваемая частица в процессе нагружения. Если после нагружения до давления p^* давление в частице начинает падать (идет процесс разгрузки), то связь между давлением и плотностью описывается вторым уравнением в (6), причем на этапе разгрузки $d\rho^*/dt = 0$. Если после такого падения

давление вновь начинает возрастать (догрузка), не превышая при этом p^* , то в этом случае связь между давлением и плотностью также дается вторым уравнением в (6). В условии (5) предел текучести полагается переменным, зависящим от давления p. Эта зависимость задается соотношением:

$$\sigma_T = \sigma_T(p) = \sigma_0 + \frac{kp}{1 + kp/(\sigma_M - \sigma_0)},$$
(7)

где σ_0 , σ_M , k – константы грунтовой среды, имеющие следующий физический смысл: k – коэффициент внутреннего трения, σ_M – предельная прочность, σ_0 – сцепление.

На границах контакта BB с пластиной, пластины с грунтом моделируется условие непроникания и отсутствия трения. В этом случае на контактной поверхности полагаются равными нормальные компоненты скоростей и отсутствие сдвиговых напряжений. В начальный момент времени все среды покоятся, напряжения и деформации отсутствуют.

Для моделирования процесса распространения детонации в заряде ВВ применяется гидродинамическая теория детонации [3]. Согласно этой модели, детонационная волна является ударной волной, на фронте которой за счет химических реакций происходит мгновенное энерговыделение, поддерживающее процесс ее распространения в соответствии с принципом Гюйгенса (каждая точка BB, до которой доходит детонационная волна, становится источником детонации и независимо излучает детонационную волну). В соответствии с гидродинамической теорией детонации скорость распространения этой волны $D_{\rm BB}$ постоянна и детонация от места инициации распространяется по лучам. Вызванное химическими реакциями энерговыделение задается путем увеличения энергии на величину $\Delta e = \rho_{\rm BB}Q$ в тех точках BB, которые располагаются на фронте детонационной волны [5]. Здесь Q – калорийность BB.

Метод численного решения

Решение уравнений (1)–(7) производится модифицированным методом Годунова [4], реализованным в ППП "Динамика-2" [6]. В процессе решения выделяются подвижные контактные границы между газом и металлом, металлом и грунтом. На первом этапе моделировались газодинамические процессы в плоской постановке (γ =0) без учета взаимодействия с преградой. Размер расчетной области равен 200 мм по оси *z* и 150 мм по оси *r*. Расчетная область покрывалась сеткой 200×150 ячеек. Расчеты производились до момента времени 10÷13 мкс. Размеры области выбраны таким образом, чтобы условия, поставленные на ее границах, не успевали оказать влияние на процессы течения в окрестности заряда за заданный промежуток времени. Влияние границ в процессе решения постоянно контролировалось.

Результаты численного исследования газокумулятивных процессов

Размеры зарядов, аналогичные [1], приведены в табл. 1. В качестве материала зарядов использовано BB, характеризующееся следующими параметрами: $D_{\rm BB} = 7,8$ км/с, $\rho_{\rm BB} = 1,52$ г/см³, $Q_{\rm BB} = D^2/(2(\chi^2 - 1))$. Инициация заряда осуществлялась по его верхней поверхности.

Таолица	<i>5лица</i> 1	Таб.
---------	----------------	------

№ заряда	<i>h</i> , мм	<i>L</i> , мм	<i>d</i> , мм	L/d	δ, мм	№ заряда	<i>h</i> , мм	<i>L</i> , мм	<i>d</i> , мм	L/d	δ, мм
1	20	20	40	0,5	20	3	20	20	20	1	20
2	20	60	20	1	0	4	20	20	10	2	20

На рис. 2,*a*, *б* показаны изолинии плотностей для заряда №1 в моменты времени 7 и 9,5 мкс от начала инициации соответственно. На рис. 2,*a* линии, обозначенной цифрой *l*, соответствует значение $\rho/\rho_{BB}=0,48$; 2-0,4; 3-0,32; 4-0,04; на рис. 2,*b* соответственно l - 0,6; 2 - 0,46; 3 - 0,32 г/см³, 4 - 0,18; 5 - 0,05. В момент 7 мкс отчетливо видно взаимодействие волн и граней *AC* и *CD* заряда. Момент 9,5 мкс близок рассмотренному в [1] моменту 4,2 мкс, отсчитываемому после окончания детонации (время детонации заряда ≈5 мкс). К этому моменту в полости заряда формируется кумулятивная струя за счет взаимодействия сходящихся потоков ПВ. Сравнивая рис. 2,*a* и *б*, следует отметить, что в момент времени t=7 мкс максимальные значения плотности находятся внутри области, которую занимало BB в начальный момент времени (t=0). В момент t=9,5 мкс максимальные значения плотности сконцентрированы вдоль плоскости симметрии заряда. Вне области заряда происходит разлет ПВ.

Динамику газодинамических полей внутри заряда иллюстрируют рис. 3, а-г, представляющие распределения давления, плотности, скорости у и плотности импульса ру вдоль плоскости симметрии заряда в различные моменты времени. Кривые 1, 2, ..., 6 соответствуют моментам времени 5, 6, ..., 10 мкс соответственно. Отрезок, обозначенный цифрой 7, соответствует начальному положению плоскости симметрии ВВ. Величина ру введена в рассмотрение для оценки потенциальной эффективности заряда в силу того, что в один и тот же момент времени максимумы скорости и плотности имеют различную локализацию и динамику изменения. Здесь и далее давление отнесено к $p_0 = 0,1$ МПа, плотность – к начальной плотности ВВ, скорость – к скорости $D_{\rm BB}$, плотность импульса к произведению $\rho_{\rm BB} v_{\rm BB}$. К моменту времени t = 9 мкс давление в струе возросло в 7·10⁴ раз. При этом отношение ρ/ρ_{BB} составило величину, равную 0,6; а отношение $v/D_{BB} - 1,1$. Первый момент времени (5 мкс) соответствует окончанию детонации заряда. В следующие моменты 6 и 7 мкс происходит уменьшение амплитудных значений давления и плотности на плоскости симметрии заряда и рост значений скорости v, причем максимальные значения давления и плотности находятся внутри заряда, вернее, внутри его начального положения. В последующие моменты времени происходит как смещение максимумов физических величин из полости заряда, так и существенное увеличение их амплитудных значений, что свидетельствует о формировании кумулятивной струи и ее истечении из полости заряда. К моменту *t* = 10 мкс происходит понижение значений плотности и давления в струе.

В заряде №2 кумулятивная струя образуется внутри полости заряда и характеризуется весьма существенными значениями величин плотности и давления, дости-

гающими своего максимума (почти в два раза превышающего значения соответствующих величин в заряде №1) к моменту времени t=9 мкс. На рис. 4 представлены изолинии давления (p/p_0) в этот момент времени. Цифрами l, 2, ..., 5 обозначены линии, соответствующие значениям 127000, 118000, 78000, 39000, 9800.

В последующие моменты времени значения давления и плотности в струе резко уменьшаются, хотя скорость потока продолжает возрастать. Таким образом, после выхода струи из полости заряда плотность импульса ее становится небольшой (рис. 5,a-2), что согласуется с результатами [1], где отмечен незначительный кумулятивный эффект на выходе из заряда \mathbb{N} На рис. 5 кривые, обозначенные цифрами 1, 2,

...,7, соответствуют моментам времени 7,5, 8, 9, 10, 11, 12, 13 мкс. Цифрой 8 обозначен отрезок, соответствующий начальному положению ВВ. На рис. 6,*a* и б показаны изолинии плотности на момент времени 9,5 мкс, полученные в расчетах с зарядами $\mathbb{N} \mathbb{N}$ 3 и 4 соответственно. На рис. 6,*a* линии, обозначенной цифрой *1*, соответствует значение $\rho/\rho_{BB} = 0,51; 2 - \rho/\rho_{BB} = 0,34; 3 - \rho/\rho_{BB} = 0,21; 4 - \rho/\rho_{BB} = 0,05$, на рис. 6,*б* соответственно *1* - 0,44; 2 - 0,3; 3 - 0,22; 4 - 0,04.

Оценивая полученные результаты, можно сделать вывод о существенном влиянии формы заряда BB на образующуюся кумулятивную струю, ее конфигурацию, время истечения из полости заряда, физические параметры в струе, а следовательно, и на ее разрушающую силу. На рис. 3,*г*, 5,*г*, 7,*a*, *б* представлены распределения плотности импульса в потоке ПВ вдоль плоскости симметрии зарядов №№1, 2, 3, 4 соответственно. На рис. 7,*a*, *б* кривые, обозначенные цифрами 1, 2, ..., *6*, соответствуют моментам времени 5, 6, ..., 10 мкс. Отрезок, обозначенный цифрой 7, соответствует начальному положению BB. Видно, что амплитуда плотности импульса в струе ПВ заряда №2 наименьшая. В случае зарядов №№ 3 и 4 амплитудные значения плотности импульса выше, но расположены практически внутри полости зарядов

и сохраняются непродолжительное время. И только в случае заряда №1 плотность импульса увеличивается по мере истечения струи из полости ПВ и сохраняется достаточно продолжительное время.

Сравнивая распределения плотностей импульсов ПВ, можно ожидать, что наибольшую пробивную силу должны иметь заряды №1 и №3.

Результаты исследования воздействия кумулятивных струй на преграду

Были проведены расчеты действия кумулятивных струй зарядов №1–4 на стальные преграды. Задачи решались также в плоской постановке. Заряд располагался на массивной стальной плите (Ст 20) толщиной 30 мм. Механические характеристики стали: плотность ρ = 7,8 г/см³, модуль объемной деформации K = 1,67·10⁵ МПа, модуль сдвига μ = 7,69·10⁴ МПа, предел текучести σ_T = 250 МПа. В свою очередь, плита покоилась на грунтовом основании. В качестве грунтовой среды использовался песок, уравнение состояния (6) которого имеет вид [7]:

$$p = \rho_0 A^2 \cdot \varepsilon / (1 - B\varepsilon)^2 \quad \text{при нагрузке,}$$

$$p = p^* - \rho_0 A^2 \cdot (\varepsilon_g - \varepsilon) / (1 - q) \quad \text{при разгрузке,}$$
(8)

где $\varepsilon_g = 1 - \rho_0/\rho_g$, ρ_0 – начальная плотности грунта, ρ_g – предельная плотность, начиная с которой ветви нагружения и разгрузки совпадают; *A* и *B* – параметры ударной адиабаты материала; *q* – коэффициент разгрузки (отношение остаточной деформации к максимально достигнутой в данном цикле нагружения); *p*^{*} – максимальное давление, достигнутое в предыдущем процессе активного нагружения. В расчетах использовались следующие значения: $\rho_0 = 1,64$ г/см³, *A* = 0,6 км/с, *B* = 1,94, $\rho_g = 2,38$ г/см³, *q* = 0,8. Результаты измерений кумулятивного эффекта в момент времени *t* = 35 мкс после окончания детонации приведены в табл. 2.

Таблииа	2
	_

N⁰	S _{BB}	S _{выемки}	$S_{\rm выемки}/S_{\rm BB}$	N⁰	$S_{\rm BB}$	$S_{\rm выемки}$	$S_{\rm выемки}/S_{\rm BB}$
1	12,00	25,26177	2,1051475	3	10,00	20,55768	2,055768
2	12,00	19,45172	1,62097625	4	9,00	18,34341	2,03815611

К этому моменту времени закончена передача энергии от продуктов детонации к преграде, давление на преграду становится близким к нулю для всех видов зарядов, и пластина продолжает деформироваться фактически инерционно. На рис. 8 представлены зависимости от времени давления, действующего на стальную преграду со стороны заряда в точке на плоскости симметрии преграды (цифра *I*) и в точке *E*

(цифра 2). В табл. 2 представлены: площади, занимаемые первоначально BB (задача решалась в плоской постановке), площади образующихся к рассматриваемому моменту времени выемок и отношения площадей выемок к площади BB. Наибольшие значения этих величин имеют заряды №1 и №3, что соответствует выводам предыдущего раздела о расчетной эффективности кумулятивных струй и выводам из экспериментальных исследований [1].

На тот же момент времени оценивались глубины образующихся выемок, что характеризует локальное действие струи. Результаты показаны на рис. 9, где кривые 1, 2, 3, 4 соответствуют действию зарядов №№1, 2, 3 и 4. Из рисунка видно, что большие глубины достигаются при действии заряда №3.

На рис. 10,*а* и б представлены зависимости $\sigma_{zz}(t)$ в некоторых точках преграды для заряда №3 и противодавления p(t) со стороны грунта на преграду.

Цифра *1* соответствует точке на плоскости симметрии, цифра 2 – точке *F*. Растягивающие напряжения, возникающие в пластине, существенно превышают прочность на откол, составляющий для Ст $20 \approx 3 \div 4$ ГПа [8]. Это свидетельствует о возможности разрушения пластины путем образования каверны с лицевой стороны и откола с тыльной стороны поверхности.

Результаты численных решений по оценке эффективности различных зарядов в целом подтверждают выводы [1] о высокой пробивной силе заряда №3 и в то же время указывают на высокую эффективность заряда №1.

Сравнение численных решений в плоской и осесимметричной постановках

Описанные выше задачи для зарядов №№1, 3, 4 были просчитаны также в осесимметричной постановке. Полученные результаты не противоречат выводам, полученным при решении плоских задач, об эффективности различных зарядов. В осесимметричной постановке влияние формы заряда на его кумулятивные свойства аналогично тому, что наблюдается в плоской задаче. Однако в осесимметричных задачах степень сжатия на оси симметрии выше, глубина образующейся выемки больше. На рис. 11 приведены зависимости от времени глубин каверн, образующихся в результате действия зарядов №1 (кривая 1), №3 (кривая 2), №4 (кривая 3).

На рис. 12 показаны формы образующихся кумулятивных выемок на момент 50 мкс для плоского и осесимметричного расчетов. Цифра *1* соответствует плоской, цифра *2* – осесимметричной постановкам.

Проведенные численные исследования свидетельствуют о применимости методики [4, 5] для расчета формирования газокумулятивных струй и их взаимодействия с преградами. Результаты расчетов согласуются с выводами экспериментальных исследований [1] о первоначальном формировании ударно-сжатой области ПВ, из которой формируется высокоскоростная струя, скорость которой превышает скорость детонации ВВ. Среди рассмотренных зарядов наибольший кумулятивный эффект проявляют заряды с воздушной полостью, близкой к квадратной. Особенности напряженно-деформированного состояния стальной преграды позволяют сделать вывод о ее возможном откольном разрушении, несмотря на наличие грунтового основания.

Работа выполнена при поддержке РФФИ (грант № 04-05-64614а) и ФЦНТП "Исследования и разработки по приоритетным направлениям науки и техники" (ЛОТ № 2005-Р4-112/001, XII очередь – научные школы, шифр темы Р4-112/001/404).

Литература

1. О механизме формирования газовой высокоскоростной струи / Ю.В. Батьков [и др.] // Физика горения и взрыва. – 2001. – Т. 37, №5. – С. 98–103.

2. Высокоскоростное метание твердых тел / Л.А. Мержиевский [и др.] // Физика горения и взрыва. – 1987. – Т. 23, №5. – С. 77–91.

3. *Баум*, Ф.А. Физика взрыва / Ф.А. Баум [и др.] – М.: Наука, 1975. – 704 с.

4. Метод распада разрывов в динамике упругопластических сред / М.Х. Абузяров [и др.] // ЖВМиМФ. – 2000. – Т. 40, №6. – С. 940–953.

5. Абузяров, М.Х. Моделирование взрывных процессов в мягком грунте / М.Х. Абузяров [и др.] // II Науч. конф. по механике и прочности конструкций, посвященная 80-летию академика Е.А. Негина: Сб. докл. – Саров, ВНИИЭФ. – 2002. – С. 90–100.

6. Пакет программ "Динамика-2" для решения плоских и осесимметричных задач нестационарного взаимодействия конструкций со сжимаемыми средами / В.Г. Баженов [и др.] // Мат. моделирование. – 2000. – Т.12, №6. – С. 67–72.

7. *Цветкова*, *Е.В.* Исследование удара и проникания деформируемых цилиндрических ударников в мягкий грунт / Е.В. Цветкова // Прикладные проблемы прочности и пластичности: Межвуз. сб. / Н.Новгород: Изд-во ННГУ. – 2003. – Вып. 65. – С. 112–121.

8. Разрушение деформируемых сред при импульсных нагрузках / Б.Л. Глушак [и др.] – Н.Новгород, 1992. – 192 с.

[25.04.2005]