УДК 539.3

ЧИСЛЕННЫЙ АНАЛИЗ ПРОЧНОСТИ СТЕКЛОПЛАСТИКОВЫХ ЦИЛИНДРИЧЕСКИХ ОБОЛОЧЕК РАЗЛИЧНОЙ СТРУКТУРЫ ПРИ ИМПУЛЬСНОМ НАГРУЖЕНИИ^{*}

© 2013 г. Н.А. Абросимов¹, А.В. Елесин¹, Л.Н. Лазарев², Н.А. Новосельцева¹

¹НИИ механики Нижегородского госуниверситета им. Н.И. Лобачевского ²Нижегородский госуниверситет им. Н.И. Лобачевского

abrosimov@mech.unn.ru

Поступила в редакцию 25.11.2013

Рассматривается методика численного анализа влияния структуры армирования на характер динамического поведения и прочность слоистых стеклопластиковых цилиндрических оболочек, нагруженных однократным импульсом внутреннего давления.

Ключевые слова: композитные материалы, оболочки, структура армирования, импульсное нагружение, численные методы.

Введение

Возрастающее применение композитных материалов при создании конструкций современной техники обусловливает значительный интерес к исследованию характерных особенностей их динамического поведения и прочности. Необходимость сохранения работоспособности этих конструкций в условиях интенсивных импульсных нагрузок предъявляет повышенные требования к моделям и методам расчета на прочность с тем, чтобы применяемые расчетные схемы наиболее полно и всесторонне описывали моделируемые реальные процессы. Особенно важным для прикладных исследований является изучение начального неустановившегося процесса распространения возмущения в трансверсальном направлении по отношению к плоскости армирования композитного элемента конструкции. Имеющиеся весьма немногочисленные теоретические [1–3] и экспериментальные исследования [4] свидетельствуют о том, что разрушение композитных элементов конструкций при интенсивных импульсных воздействиях наступает на стадии переходного процесса и связано со спецификой их структуры, с невысокой поперечной прочностью.

Отмеченные обстоятельства позволяют сделать вывод об актуальности изучения динамической реакции и прочности импульсно нагруженных слоистых композитных элементов конструкций на основе моделей, описывающих с необходимой

^{*}Выполнено при частичном финансировании Программой государственной поддержки ведущих научных школ РФ (грант НШ-2843.2012.8) и РФФИ (грант 13-08-00742).

точностью не только продольные, но и поперечные волновые процессы в композитном материале, что и составляет предмет данной статьи.

1. Постановка и метод решения задачи

Отнесем цилиндрическую оболочку длиной *L* и радиусом *R* к системе координат α_i ($i = \overline{1,3}$): ось α_1 направлена вдоль образующей; α_2 – по окружности; α_3 – по внешней нормали к срединной поверхности. Коэффициенты Ламе и главные кривизны равны: $H_1 = Z_1 = 1$, $H_2 = Z_2 = 1 + k_2\alpha_3$, $H_3 = 1$, $k_1 = 0$, $k_2 = 1/R$.

Предполагается, что цилиндрическая оболочка образована спиральной перекрестной намоткой однонаправленного композитного материала с различной структурой пакета по толщине. Кинематическая модель деформирования многослойного пакета основывается на неклассической теории оболочек. Для этого компоненты вектора перемещений аппроксимируются конечными рядами по толщине многослойного пакета [2]:

$$u_i(\alpha_1, \alpha_3, t) = \sum_{n=0}^N u_i^n(\alpha_1, t) \left(n + \frac{1}{2} \right)^{1/2} P_n(x), \quad -1 \le x \le 1,$$
(1)

где $x = 2\alpha_3/h$; h – толщина оболочки; $u_i^n(\alpha_1, t)$ – искомые функции; t – время, $(n + 1/2)^{1/2} P_n(x)$ – ортонормированные полиномы Лежандра.

Формулировка геометрических зависимостей базируется на соотношениях простейшего квадратичного варианта нелинейной теории упругости в криволинейных координатах [5], которые с учетом (1) запишутся в виде:

$$e_{11} = \sum_{n=0}^{N} \frac{\partial u_1^n}{\partial \alpha_1} \left(n + \frac{1}{2} \right)^{1/2} P_n(x) + \frac{1}{2} \omega_2^2,$$

$$e_{22} = \frac{k_2}{Z_2} \sum_{n=0}^{N} u_3^n \left(n + \frac{1}{2} \right)^{1/2} P_n(x),$$

$$e_{33} = \frac{2}{h} \sum_{n=1}^{N} u_3^n \left(n + \frac{1}{2} \right)^{1/2} P_n'(x),$$

$$e_{13} = \frac{2}{h} \sum_{n=1}^{N} u_1^n \left(n + \frac{1}{2} \right)^{1/2} P_n'(x) + \sum_{n=0}^{N} \frac{\partial u_3^n}{\partial \alpha_1} \left(n + \frac{1}{2} \right)^{1/2} P_n(x),$$

$$\omega_2 = \frac{1}{2} \left(\frac{2}{h} \sum_{n=1}^{N} u_1^n \left(n + \frac{1}{2} \right)^{1/2} P_n'(x) - \sum_{n=0}^{N} \frac{\partial u_3^n}{\partial \alpha_1} \left(n + \frac{1}{2} \right)^{1/2} P_n(x) \right),$$
(2)

где $P'_n(x)$ – производные от полиномов Лежандра.

Связь между тензорами напряжений и деформаций устанавливается на основе закона Гука для ортотропного тела в сочетании с теорией эффективных модулей. Определяющие соотношения для симметричных смежных слоев композитной оболочки запишутся в виде:

$$\sigma_{ii} = \sum_{j=1}^{3} C_{ij} e_{jj} (i = \overline{1,3}), \quad \sigma_{13} = G_{13} e_{13}, \quad (3)$$

где C_{ij} , G_{13} – эффективные жесткостные характеристики. При этом допускается локальное разрушение элементарных слоев в пакете многослойного композита. Модель деградации жесткостных характеристик многослойного пакета формулируется на базе критерия максимальных напряжений, вычисленных в осях ортотропии слоя. В процессе деформирования и трещинообразования связующего предполагается жесткое сцепление между соседними слоями. Многослойный пакет находится в условиях объемного напряженного состояния.

Деформирование однонаправленного материала в составе пакета слоев многослойного композита происходит в соответствии с модельными диаграммами, изображенными на рис. 1, где F_{ij}^{P} , F_{ij}^{C} , ε_{ij}^{P} , ε_{ij}^{C} – пределы прочности и предельные деформации материала на растяжение и сжатие; $\varepsilon_{ij}^{P\max}$, $\varepsilon_{ij}^{C\max}$ – максимальные значения деформаций растяжения и сжатия за предысторию деформирования. Деформирование однонаправленного материала в направлении волокон полностью упруго, и по достижении напряжениями, действующими вдоль волокон, предельных значений слой считается разрушенным. Деформирование слоя в направлении, ортогональном волокнам, происходит линейно-упруго, затем начинается процесс трещинообразования в связующем. Разгрузка из любой точки участка трещинообразования происходит при модуле упругости, равном секущему модулю диаграммы \widetilde{E}_{ii} = $=E_{ii}^{0}\hat{\epsilon}_{ii}^{P}/\epsilon_{ii}^{P}$ так, где E_{ii}^{0} (i=2,3) – значения модулей упругости в начальном неповрежденном состоянии. Повторное деформирование в поперечном направлении происходит также при положительных значениях напряжений, не превышающих F_{ii}^{P} , и модуле \widetilde{E}_{ii} . При сжатии монослоя полностью восстанавливается начальный модуль упругости материала. Если поперечные напряжения достигают предельной величины F_{ii}^{C} , связующее считается разрушенным и слой продолжает воспринимать только сжимающую нагрузку. Поведение монослоя при сдвиге не зависит от знака напряжений σ_{ii} (*i* = 1,2; *j* = 2,3; *i* ≠ *j*), поэтому после локального разрушения разгрузка из любой точки диаграммы происходит при модуле сдвига \tilde{G}_{ii} = $= G_{ii}^0 \varepsilon_{ii}^P / \varepsilon_{ii}^{\max}$

Рис. 1

В зависимости от знака поперечных деформаций и модели разрушения связующего модули упругости монослоя с трещинами принимают одно из возможных значений, приведенных в табл. 1 [2].

В результате разрушения отдельных элементарных слоев композита происходит перераспределение напряжений между слоями, а многослойный пакет продолжает оказывать сопротивление дальнейшему деформированию. Будем считать, что исчерпание несущей способности многослойной конструкции происходит в момент зануления в каком-либо поперечном сечении всех жесткостных характеристик.

Таблица 1

Характер разрушения	Текущее значение поперечных деформаций	$E_{11}^{}$	E ₂₂	E ₃₃	G_{12}	<i>G</i> ₁₃	<i>G</i> ₂₃
$\sigma_{11} > F_{11}^P$		0	0	0	0	0	0
$ \sigma_{11} > F_{11}^c$	$e_{22} > 0; e_{33} > 0$	0	0	0	0	0	0
	$e_{22} > 0; e_{33} < 0$	0	0	E ₃₃	0	0	0
	$e_{22} < 0; e_{33} > 0$	0	E_{22}	0	0	0	0
	$e_{22} < 0; e_{33} < 0$	0	E ₂₂	E ₃₃	0	0	0
$\sigma_{22} > F_{22}^{P}$	$e_{22} > 0$	E_{11}^{0}	\widetilde{E}_{22}	E 33	G_{12}	G_{13}	<i>G</i> ₂₃
	$e_{22} < 0$	E_{11}^{0}	E_{22}^{0}	E 33	G_{12}	<i>G</i> ₁₃	G ₂₃
$\sigma_{33} > F_{33}^{P}$	$e_{33} > 0$	E_{11}^{0}	E 22	\widetilde{E}_{33}	G_{12}	<i>G</i> ₁₃	<i>G</i> ₂₃
	$e_{33} < 0$	E_{11}^{0}	E_{22}	E_{33}^{0}	G_{12}	<i>G</i> ₁₃	G ₂₃
$ \sigma_{22} > F_{22}^C$ или $ \sigma_{33} > F_{33}^C$	$e_{22} > 0; e_{33} > 0$	E_{11}^{0}	0	0	G_{12}	<i>G</i> ₁₃	G ₂₃
	$e_{22} > 0; e_{33} < 0$	E_{11}^{0}	0	E 33	G_{12}	<i>G</i> ₁₃	G ₂₃
	$e_{22} < 0; e_{33} > 0$	E^{0}_{11}	E_{22}	0	G_{12}	<i>G</i> ₁₃	G ₂₃
	$e_{22} < 0; e_{33} < 0$	E^{0}_{11}	E_{22}	E 33	G_{12}	G_{13}	<i>G</i> ₂₃
$ \sigma_{12} > F_{12}$		E_{11}^{0}	E 22	E 33	\widetilde{G}_{12}	<i>G</i> ₁₃	G ₂₃
$ \sigma_{13} > F_{13}$		E_{11}^{0}	E_{22}	E 33	G_{12}	\widetilde{G}_{13}	<i>G</i> ₂₃
$ \sigma_{23} > F_{23}$		E^{0}_{11}	E_{22}	E 33	G_{12}	<i>G</i> ₁₃	\widetilde{G}_{23}

Схема редуцирования модулей упругости слоя

Для построения энергетически согласованной разрешающей системы уравнений движения оболочки используем принцип возможных перемещений [6], который с учетом внутреннего нагружения и свободных торцов оболочки запишется в виде:

$$\int_{0}^{L} \sum_{n=0}^{N} \left[M_{11}^{n} \frac{\partial(\delta u_{1}^{n})}{\partial \alpha_{1}} + (M_{13}^{'n} + N_{11}^{'n}) \delta u_{1}^{n} + (M_{13}^{n} - N_{11}^{n}) \frac{\partial(\delta u_{3}^{n})}{\partial \alpha_{1}} + (k_{2}M_{22}^{n} + M_{33}^{n}) \delta u_{3}^{n} \right] d\alpha_{1} + \int_{0}^{L} \sum_{n=0}^{N} \left[\left(\sum_{m=0}^{N} A_{m}^{n} \ddot{u}_{1}^{m} \right) \delta u_{1}^{n} + \left(\sum_{m=0}^{N} A_{m}^{n} \ddot{u}_{3}^{m} \right) \delta u_{3}^{n} \right] d\alpha_{1} - \int_{0}^{L} \sum_{n=0}^{N} F_{3}^{n} u_{3}^{n} d\alpha_{1} = 0, \quad (4)$$

где

$$\begin{split} M_{11}^{n} &= \frac{h}{2} \sum_{i=1}^{K} \frac{x_{i+1} - x_{i}}{2} \int_{-1}^{1} \sigma_{11} Z_{2} \left(n + \frac{1}{2} \right)^{1/2} P_{n} \left(\frac{x_{i+1} - x_{i}}{2} t + \frac{x_{i+1} + x_{i}}{2} \right) dt, \\ M_{22}^{n} &= \frac{h}{2} \sum_{i=1}^{K} \frac{x_{i+1} - x_{i}}{2} \int_{-1}^{1} \sigma_{22} \left(n + \frac{1}{2} \right)^{1/2} P_{n} \left(\frac{x_{i+1} - x_{i}}{2} t + \frac{x_{i+1} + x_{i}}{2} \right) dt, \\ M_{13}^{n} &= \frac{h}{2} \sum_{i=1}^{K} \frac{x_{i+1} - x_{i}}{2} \int_{-1}^{1} \sigma_{13} Z_{2} \left(n + \frac{1}{2} \right)^{1/2} P_{n} \left(\frac{x_{i+1} - x_{i}}{2} t + \frac{x_{i+1} + x_{i}}{2} \right) dt, \\ M_{13}^{\prime m} &= \frac{h}{2} \sum_{i=1}^{K} \frac{x_{i+1} - x_{i}}{2} \int_{-1}^{1} \sigma_{13} Z_{2} \left(n + \frac{1}{2} \right)^{1/2} P_{n} \left(\frac{x_{i+1} - x_{i}}{2} t + \frac{x_{i+1} + x_{i}}{2} \right) dt, \end{split}$$

291

$$\begin{split} N_{11}^{n} &= \frac{h}{4} \sum_{i=1}^{K} \frac{x_{i+1} - x_{i}}{2} \int_{-1}^{1} \sigma_{11} Z_{2} \omega_{2} \left(n + \frac{1}{2} \right)^{1/2} P_{n} \left(\frac{x_{i+1} - x_{i}}{2} t + \frac{x_{i+1} + x_{i}}{2} \right) dt, \\ N_{11}^{\prime n} &= \frac{1}{2} \sum_{i=1}^{K} \frac{x_{i+1} - x_{i}}{2} \int_{-1}^{1} \sigma_{11} Z_{2} \omega_{2} \left(n + \frac{1}{2} \right)^{1/2} P_{n}^{\prime \prime} \left(\frac{x_{i+1} - x_{i}}{2} t + \frac{x_{i+1} + x_{i}}{2} \right) dt, \\ M_{33}^{n} &= \frac{h}{4} \sum_{i=1}^{K} \frac{x_{i+1} - x_{i}}{2} \int_{-1}^{1} \sigma_{33} Z_{2} \omega_{2} \left(n + \frac{1}{2} \right)^{1/2} P_{n}^{\prime \prime} \left(\frac{x_{i+1} - x_{i}}{2} t + \frac{x_{i+1} + x_{i}}{2} \right) dt, \\ A_{n}^{n} &= \rho \frac{h}{2} \left(n = \overline{0, N} \right), \quad A_{n+1}^{n} &= A_{n}^{n+1} = \rho \frac{k_{2}h^{2}}{4} \frac{n+1}{\sqrt{4n^{2} + 8n + 3}} \left(n = \overline{0, N-1} \right), \\ A_{m}^{n} &= 0 \text{ при } n \neq m, \left(m, n = \overline{0, N} \right), \quad F_{3}^{n} &= \left(n + \frac{1}{2} \right)^{1/2} (-1)^{n} p_{3} \left(1 - \frac{k_{2}h}{2} \right), \end{split}$$

ρ – плотность материала оболочки; p₃ – интенсивность импульса внутреннего давления; K – число слоев оболочки; x_i – толщинная координата *i*-го слоя, отсчитываемая от внутренней поверхности оболочки.

Выполняя в вариационном уравнении (4) интегрирование по частям и учитывая независимость вариаций δu_i^n , получим уравнения движения цилиндрической оболочки и естественные динамические граничные условия. Дополняя полученные соотношения необходимым числом начальных условий, получим замкнутую систему уравнений для анализа нестационарных процессов деформации и прочности композитных цилиндрических оболочек, нагруженных импульсом внутреннего давления, в неклассической постановке.

Численный метод решения сформулированной задачи основывается на явной вариационно-разностной схеме [2].

2. Результаты решения задачи

Для апробации рассматриваемой методики было проведено сравнение численных расчетов с экспериментальными данными [7] по однократному нагружению изнутри цилиндрической оболочки импульсом давления, вызванным подрывом в ее геометрическом центре заряда взрывчатого вещества (BB) массой m = 0,064 кг. В расчетах импульс давления задавался с помощью эмпирической зависимости

$$p_3(\alpha_1, t) = \begin{cases} 0.35mq/l^3 \text{ при } t \le 0.35l/\sqrt{q}, \\ 0 \text{ при } t > 0.35l/\sqrt{q}, \end{cases}$$

где $q = 4,77 \cdot 10^6$ Дж/кг – теплотворная способность BB; l – расстояние от центра заряда до точки внутренней поверхности оболочки. Оболочка получена намоткой восьми спиральных слоев (угол армирования $\varphi = \pm 45^\circ$) и кольцевых ($\varphi = 90^\circ$) слоев с отношением их толщин 1:1 (структура пакета [90°, $\pm 45^\circ$]₄).

Оболочка имела следующие размеры: радиус внутренней поверхности R = 0,15 м, толщина h = 0,00833 м, длина L = 4R.

Физико-механические характеристики однонаправленного композитного материала: $E_{11} = 54,1$ ГПа, $E_{22} = E_{33} = 9,9$ ГПа, $v_{12} = v_{13} = 0,281$, $v_{23} = 0,3$, $G_{12} = G_{13} = 3,57$ ГПа, $G_{23} = 3,42$ ГПа, $\rho = 2013$ кг/м³.

В таблице 2 представлены результаты сравнения численных расчетов с экспе-

риментальными данными по максимальным значениям кольцевой деформации e_{22}^* в центральном сечении оболочки на ее внешней поверхности и по периоду радиальных колебаний *T*. Здесь в числителе приведены экспериментальные значения, а в знаменателе – расчетные.

Таблица 2 Результаты сравнения численных расчетов и экспериментальных данных

e [*] ₂₂ , %	$T \cdot 10^{6}$, c
1,00	230
0,92	240

Видно, что максимальная ошибка по амплитуде и периоду колебаний составляет 8% и 5% соответственно. При этом следует заметить, что погрешность экспериментальных измерений достигала 10% [7].

Некоторые характерные осциллограммы окружных деформаций в центральном сечении на внешней поверхности неразрушенных оболочек для различных структур армирования и массы заряда BB m = 0.04 кг приведены на рис. 2.

Рис. 2

Результаты сравнительного анализа численного и экспериментального исследования [7] влияния углов армирования и схемы чередования слоев на характер послойного разрушения оболочек представлены в табл. 3. Здесь в числителе приведены экспериментальные данные, а в знаменателе – результаты расчетов.

n

Таблица :	5
-----------	---

Результаты сравнения расчетов и экспериментальных данных							
Структура армирования	h/R, %	т. м _{вв} , кг	$m^* \cdot 10^3$	e [*] ₂₂ , %	Состояние оболочки эксперимент расчет		
[±65°] ₈	6,35	0,063	5,50	$\frac{0,70}{0,70}$	не разрушилась не разрушилась, есть трещины в связующем		
[90°] ₁₆	5,52	0,0624	6,25	$\frac{0,55}{0,69}$	разрушилась, кольцевые трещины разрушилась		
	5,40	0,064	7,00	$\frac{1,00}{0,80}$	не разрушилась, есть разрушения связующего		
$[\pm 45^{\circ}, 90_{2}^{\circ}]_{4}$	4,80	0,169	19,30	$\frac{3,10}{2,93}$	не разрушилась, внутренние отслоения разрушилась		

На рис. З для различных структур армирования показаны зависимости максимальных кольцевых деформаций от удельной взрывной нагрузки $m^* = m_{\rm BB}/m_{\rm O} (m_{\rm O} - {\rm Macca} {\rm ofonoчku})$, где точками обозначены результаты эксперимента (светлые точки – оболочка не разрушена, темные – разрушена), а сплошная линия – результаты расчета.

Анализ полученных расчетных данных показал, что динамическая реакция и характер разрушения слоистых цилиндрических оболочек существенно зависит от структуры армирования. При этом значения удельной взрывной нагрузки m^* и максимальной кольцевой деформации e_{22}^* в фазе разрушения для оболочек с различными углами армирования и схемами укладки слоев заметно отличаются. Видно, что оболочки с комбинированной схемой армирования (чередующиеся спиральные и кольцевые слои с соотношением их толщин (1:1)) обладают наиболее высокой несущей способностью.

Заключение

Предложенная расчетная модель позволяет с удовлетворительной точностью описывать процесс послойного разрушения цилиндрических оболочек намоточного типа с различными структурами армирования.

Список литературы

1. Богданович А.Е. Нелинейные задачи динамики цилиндрических композитных оболочек. Рига: Зинатне, 1987. 295 с.

2. *Абросимов Н.А., Баженов В.Г.* Нелинейные задачи динамики композитных конструкций. Н. Новгород: Изд-во ННГУ, 2002. 400 с.

3. Лепихин П.П., Ромащенко В.А. Методы и результаты анализа напряженно-деформированного состояния и прочности многослойных толстостенных анизотропных цилиндров при динамическом нагружении (обзор). Сообщение 2. Теоретические методы // Проблемы прочности. 2013. № 2. С. 31–45.

4. Федоренко А.Г., Сырунин М.А., Иванов А.Г. Критерии выбора композитных материалов для оболочечных конструкций, локализующих взрыв (обзор) // ФГиВ. 2005. Т. 41, №5. С. 3–13.

5. Шаповалов Л.А. Об учете поперечного обжатия в уравнениях нелинейной динамики оболочек // Изв. РАН. МТТ. 1997. №3. С. 156–168.

6. *Васидзу К*. Вариационные методы в теории упругости и пластичности. М.: Мир, 1987. 512 с.

7. Федоренко А.Г., Сырунин М.А., Иванов А.Г. Влияние структуры армирования ориентированных стеклопластиков на прочность круговых цилиндрических оболочек при взрывном нагружении изнутри // Механика композитных материалов. 1991. № 4. С. 631–640.

NUMERICALLY ANALYZING THE STRENGTH OF FIBERGLASS CYLINDRICAL SHELLS OF VARIOUS STRUCTURE UNDER PULSED LOADING

N.A. Abrosimov, A.V. Yelesin, L.N. Lazarev, N.A. Novoseltseva

A methodology of numerically analyzing the effect of the reinforcement pattern on the nature of dynamic behavior and strength of layered fiberglass cylindrical shells loaded by a single internal pressure pulse is considered.

Keywords: composite materials, shells, reinforcement pattern, pulsed loading, numerical methods.