УДК 539.3

# ГРАНИЧНО-ЭЛЕМЕНТНОЕ РЕШЕНИЕ ЗАДАЧИ О ДЕЙСТВИИ ПРИЗМАТИЧЕСКОГО ТЕЛА НА ПОЛУПРОСТРАНСТВО В ПОРИСТО-УПРУГОЙ ПОСТАНОВКЕ<sup>\*)</sup>

## © 2012 г. А.А. Белов, А.В. Аменицкий, С.Ю. Литвинчук, А.Н. Петров

НИИ механики Нижегородского госуниверситета им. Н.И. Лобачевского

### belov a2@mech.unn.ru

Поступила в редакцию 20.10.2012

Рассматривается в трехмерной постановке численное решение задачи методом граничного элемента в сочетании с интегральным преобразованием Лапласа о действии нестационарной силы на деформируемый пористо-упругий штамп, жестко взаимодействующий с пористо-упругим полупространством. Построены отклики перемещений и потока. На откликах перемещений продемонстрирован эффект формирования волны Рэлея.

*Ключевые слова*: граничный элемент, пористо-упругий материал, полупространство, трехмерная постановка, деформируемый штамп, нестационарная динамика.

#### 1. Постановка краевой задачи пористо-упругой динамики

Уравнения движения пористо-упругой деформируемой среды в области Ω имеют вид [1]:

$$\sigma_{ii, j} + F_i = \rho \ddot{u}_i^s + \rho_f \ddot{w}_i, \quad i, j = \overline{1, 3}.$$

Эти уравнения дополняются физическим соотношением, геометрическими соотношениями и динамическим законом Дарси [1]:

$$\sigma_{ij} = 2G\varepsilon_{ij}^{s} + \left(K - \frac{2}{3}G\right)\varepsilon_{kk}^{s}\delta_{ij} - \alpha\delta_{ij}p,$$

$$\varepsilon_{ij}^{s} = \frac{1}{2}(u_{i,j}^{s} + u_{j,i}^{s}), \quad \varepsilon_{kk}^{f} = u_{k,k}^{f},$$

$$\dot{w}_{i} = q_{i} = -\kappa \left(p_{,i} + \rho_{f}\ddot{u}_{i}^{s} + \frac{1}{\phi}\left(\frac{\rho_{a}}{\phi} + \rho_{f}\right)\ddot{w}_{i} - f_{i}^{f}\right)$$

<sup>&</sup>lt;sup>\*)</sup> Работа выполнена в рамках ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы, Программы государственной поддержки ведущих научных школ РФ (грант НШ-2843.2012.8) и при поддержке РФФИ (гранты 12-01-00698-а, 12-08-00984-а, 12-08-31572\12).

где  $\sigma_{ij}$  – компоненты тензора напряжения,  $F_i$ ,  $f_i^f$  – компоненты плотностей объемной силы и первой и второй фаз;  $u_i^s$  – вектор перемещения скелета,  $w_i$  – вектор перемещения фильтрации (просачивания), p – поровое давление;  $\rho$ ,  $\rho_f$ ,  $\rho_a$  – плотности двухфазной среды, упругого скелета, наполнителя и присоединенной массы;  $\varepsilon_{kl}^s$ ,  $\varepsilon_{kl}^f$  – компоненты тензора деформации упругого скелета и наполнителя; K, G – объемный модуль и модуль сдвига скелета;  $\kappa$  – проницаемость;  $\phi = V^f/V$ , где  $V^f$  – объем взаимосвязанных пор в образце объема V.

Здесь и далее применяется соглашение Эйнштейна для суммирования, запятая обозначает частное дифференцирование по пространственным координатам, точка над функцией обозначает дифференцирование по времени.

Формальное применение преобразования Лапласа с параметром *s* к уравнениям позволяет свести систему уравнений к дифференциальной форме записи в виде уравнений в частных производных в изображениях по Лапласу [1]:

$$B\upsilon = F, \quad \upsilon = (u, p), \tag{1}$$

$$B = \begin{bmatrix} G\nabla^2 + \left(K + \frac{1}{3}G\right)\partial_i\partial_j & -s^2(\rho - \beta\rho_f) - (\alpha - \beta)\partial_i \\ -s(\alpha - \beta)\partial_j & \frac{\beta}{s\rho_f}\nabla^2 - \frac{\phi^2 s}{R} \end{bmatrix}.$$
 (2)

Здесь  $\alpha = 1 - K/K^s$  – коэффициент эффективного напряжения,

$$\beta = -\frac{K\rho_f \phi^2 s^2}{\phi^2 s + s^2 K(\rho_a + \phi \rho_f)},$$
$$R = \frac{\phi^2 K^f K^{s^2}}{K^f (K^s - K) + \phi K^2 (K^s - K^f)},$$

где *K<sup>s</sup>* – объемный модуль зерен скелета, *K<sup>f</sup>* – объемный модуль наполнителя. Добавим граничные условия:

$$\upsilon(x,s) = \upsilon \text{ Ha } S^{u}, \ t_{i}(x,s) = t_{ni}(x,s) = t_{ni}, t_{4}(x,s) = q \text{ Ha } S^{\sigma},$$
(3)

где  $S^u$  и  $S^\sigma$  – части границы S тела  $\Omega$ , по которым заданы соответственно обобщенные перемещения и поверхностные силы;  $t_{ni}$  – граничные значения изображения по Лапласу поверхностной силы; q – граничные значения изображения по Лапласу порового потока.

Уравнения (1)–(3) полностью описывают краевую задачу в изображениях трехмерной изотропной динамической теории пороупругости.

Рассмотрим кусочно-однородное тело  $\Omega$  в трехмерном евклидовом пространстве с декартовой системой координат  $R^3$ . Границу тела обозначим через S, границы однородных частей  $\Omega_k$  (k = 1, ..., K) – через  $S_k$ . Предполагается, что  $\Omega_k$  являются изотропными пористо-упругими телами. Параметры материала каждой однородной части  $\Omega_k$  маркируем верхним индексом k. Динамическое состояние каждой части тела  $\Omega_k$  описывается системой дифференциальных уравнений в обобщенных перемещениях [2]:

$$B^k u^k = 0, \quad \upsilon^k = (u^k, p^k),$$

$$B^{k} = \begin{bmatrix} G^{k} \nabla^{2} + \left( K^{k} + \frac{1}{3} G^{k} \right) \partial_{i} \partial_{j} & -s^{2} (\rho^{k} - \beta^{k} \rho_{f}^{k}) - (\alpha^{k} - \beta^{k}) \partial_{i} \\ -s(\alpha^{k} - \beta^{k}) \partial_{j} & \frac{\beta^{k}}{s \rho_{f}^{k}} \nabla^{2} - \frac{\phi^{k^{2}} s}{R^{2}} \end{bmatrix}$$

где  $v^k(x,s)$  – изображение по Лапласу с параметром *s* вектора обобщенных перемещений точки  $x = (x_1, x_2, x_3)$ . Пусть оригинал по времени обобщенного вектора перемещений удовлетворяет нулевым начальным условиям.

Будем рассматривать следующие типы граничных условий для  $\Omega_k$ :

$$\upsilon_{l}^{k}(x,s) = f_{l}^{k}(x,s), \quad x \in S^{u} \cap S_{k}, \quad l = \overline{1,4};$$
  
$$\widetilde{t}_{l}^{k}(x,s) = g_{l}^{k}(x,s), \quad \widetilde{t}_{n} = (t_{n},q), \quad x \in S^{\sigma} \cap S_{k};$$
  
$$\upsilon_{l}^{k}(x,s) = \upsilon_{l}^{s}(x,s), \quad \widetilde{t}_{l}^{k}(x,s) = -\widetilde{t}_{l}^{s}(x,s), \quad x \in S'_{ks};$$

где  $S'_{ks}$  – граница контакта частей  $\Omega_k$  и  $\Omega_s$ . Функции  $f_l^k(x,s)$  и  $g_l^k(x,s)$  являются заданными изображениями соответствующих граничных векторов.

# 2. Результаты численных исследований

Используя граничные интегральные уравнения [3] и гранично-элементную схему [4, 5], рассмотрим задачу о действии вертикальной силы  $P(t) = t^0 f(t)$ ,  $t^0 = -1000 \text{ H/m}^2$  на деформируемый пористо-упругий штамп в форме параллелепипеда  $2 \times 2 \times 1 \text{ m}^3$ , расположенный на пористо-упругом полупространстве (рис. 1). В качестве закона изменения приложенной нагрузки возьмем функцию  $f(t) = P_0(H(t) - H(t - 0,005))$ , где H(t) - функция Хевисайда. Дневная поверхность полупространства свободная и проницаемая: на дневной поверхности задано поровое давление <math>p = 0 и поверхностные силы  $t_i(t) = 0$  ( $i = \overline{1,3}$ ), в области жесткого контакта штампа и полупространства задан поток q = 0. Расчеты проводились с использованием гранично-элементных сеток с разной степенью дискретизации, сведения о которых приведены в таблице 1. Сетка 1 приведена на рис. 2, сетка 2 – на рис. 3, сетка 3 – на рис. 4, сетка 4 – на рис. 5.



Рис. 1

|       |                  |              |                  | Таолица 1    |
|-------|------------------|--------------|------------------|--------------|
| Номер | Штамп            |              | Полупространство |              |
| сетки | Кол-во элементов | Кол-во точек | Кол-во элементов | Кол-во точек |
| 1     | 64               | 66           | 132              | 134          |
| 2     | 256              | 258          | 548              | 550          |
| 3     | 576              | 580          | 1252             | 1254         |
| 4     | 1024             | 1026         | 2308             | 2310         |



В качестве пористо-упругого материала возьмем водонасыщеный песок с параметрами:  $K = 2,1\cdot10^8$  H/м<sup>2</sup>,  $G = 9,8\cdot10^7$  H/м<sup>2</sup>,  $\rho = 1884$  кг/м<sup>3</sup>,  $\phi = 0,48$ ,  $K_s = 1,1\cdot10^{10}$  H/м<sup>2</sup>,  $\rho_f = 1000$  кг/м<sup>3</sup>,  $K_f = 3,3\cdot10^9$  H/м<sup>2</sup>,  $k = 3,55\cdot10^{-9}$  м<sup>4</sup>/(H·c). Рассмотрим точку полупространства на расстоянии 15 м от места нагружения. Сходимость решения в перемещениях продемонстрирована на рис. 6, 7, сходимость решения для потока показана на рис. 8.





Численные результаты, построенные на разных сетках, демонстрируют хорошую сходимость. Так как решения, полученные на сетках 3 и 4, достаточно близки, то для расчетов вполне можно использовать сетку 3, гарантируя достоверность получаемых значений граничных откликов. Из графиков  $u_1$ ,  $u_3$  на рис. 6, 7 отчетливо виден эффект прихода волны Рэлея. Время t = 0,01 с на графиках перемещений соответствует времени прихода волны Рэлея.

#### Список литературы

1. Schanz M. Wave propogation in viscoelastic and poroelastic continua. Berlin: Springer, 2001. 170 p.

2. Игумнов Л.А., Карелин И.С., Петров А.Н. Гранично-элементное исследование влияния коэффициента проницаемости на динамический отклик в составном пороупругом теле // Проблемы прочности и пластичности: Межвуз.сб. / Нижегород. ун-т. 2011. Вып. 73. С. 98–104.

3. Граничные интегральные уравнения для решения динамических задач трехмерной теории пороупругости / А.В. Аменицкий, А.А. Белов, Л.А. Игумнов, И.С. Карелин // Проблемы

прочности и пластичности: Межвуз. сб. / Нижегород. ун-т. 2009. Вып. 71. С. 164–171.

4. Аменицкий А.В., Игумнов Л.А., Карелин И.С. Развитие метода граничных элементов для решения проблемы распространения волн в пористых средах // Проблемы прочности и пластичности: Межвуз. сб. / Нижегород. ун-т. 2008. Вып. 70. С. 71–78.

5. Баженов В.Г., Игумнов Л.А. Методы граничных интегральных уравнений и граничных элементов в решении задач трехмерной динамической теории упругости с сопряженными полями. М.: Физматлит, 2008. 352 с.

## BOUNDARY-ELEMENT ANALYSIS OF THE PROBLEM OF A PRISMATIC BODY ACTING ON A HALF-SPACE IN A POROUS-ELASTIC FORMULATION

### A.A. Belov, A.V. Amenitskiy, S.Yu. Litvinchuk, A.N. Petrov

The action of a non-stationary force on a deformed porous-elastic die rigidly interacting with a porous-elastic half-space is analyzed in a 3D formulation, using BEM in combination with the integral Laplace transform. The displacement and flow responses are constructed. The displacement responses are used to demonstrate the effect of formation of Raleigh wave.

*Keywords*: boundary element, porous-elastic material, half-space, 3D formulation, deformed die, non-stationary dynamics.