УДК 539.3

АНАЛИЗ РОЛИ ТЕРМОМЕХАНИЧЕСКИХ ЭФФЕКТОВ ПРИ БОЛЬШИХ ДЕФОРМАЦИЯХ МЕТАЛЛОВ И СПЛАВОВ^{*)}

В.Г. Баженов, Е.В. Павленкова, Д.В. Жегалов, М.С. Баранова

НИИ механики Нижегородского госуниверситета им. Н.И. Лобачевского

Проведен анализ результатов экспериментально-теоретических исследований роли термомеханических эффектов при упругопластическом адиабатическом статическом и динамическом деформировании образцов из металлов и сплавов в зависимости от скорости и величины их деформации.

Ключевые слова: работа пластической деформации, тепловая энергия, большие деформации, скорость деформации.

Известно, что при пластическом деформировании металлов и сплавов часть работы пластической деформации переходит в тепловую энергию, остальная идет на искажение кристаллической решетки. В [1] введены две функции, количественно описывающие это явление:

$$\beta_{diff}(e_p, \dot{e}_p) = \frac{\rho c_p T}{\dot{W}_p},\tag{1}$$

$$\beta_{int}(e_p, \dot{e}_p) = \frac{\rho c_p \Delta T}{W_p}.$$
(2)

Здесь $W_p = \int \sigma de_p$ – работа пластической деформации, ρ и c_p – соответственно плотность и удельная теплоемкость материала, T – температура, σ – напряжение, e_p – пластическая деформация. Точка над функцией означает производную по времени.

Формула (1) получена [2] из уравнения нестационарной теплопроводности для адиабатических процессов деформирования (что имеет место при высокоскоростном нагружении) при пренебрежении работой упругих деформаций. Дифференциальная форма (1) характеризует мгновенный переход работы пластической деформации в тепловую энергию. Функция β_{diff} представляет собой отношение мощности выделения тепла к мощности механической работы. Интегральная формулировка (2) совпадает с выражением для коэффициента β , предложенным в [3], и являет-

^{*)} Выполнено в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы, Программы государственной поддержки ведущих научных школ России (проект НШ-4807.2010.8), а также при поддержке РФФИ (проект 11-08-00565-а).

ся отношением тепловой энергии к работе пластической деформации. Параметр β_{diff} можно определить, если в ходе эксперимента осуществлялась непрерывная регистрация изменения температуры. Для вычисления параметра β_{int} , как правило, измеряется температура образца до опыта и сразу после опыта.

В литературе имеются противоречивые данные, касающиеся поведения параметров β_{int} и β_{diff} . В первых работах в этой области [3, 4] показано, что для исследуемых материалов (медь, алюминий, сталь) $\beta_{int} \approx 0.9$, что подтверждается для меди исследованиями [5] при скоростях деформации от 10^{-3} до $3.2 \cdot 10^4$ с⁻¹. Из анализа экспериментальных данных по меди при скорости деформации порядка 10^3 с⁻¹, приведенных в [6, 7], следует, что $\beta_{int} \approx 0.7$. При скоростях деформации ($1.3 \cdot 10^3 \div$ $\div 1.8 \cdot 10^3$) с⁻¹ с увеличением остаточной деформации образцов от 0,1 до 0,32 параметр β_{int} для меди увеличивается от 0,1 до 0,6 (рис. 1) [8].

Для чистого поликристаллического тантала $\beta_{int} = 1$ при скоростях деформации 4,2·10³ и 1,33·10⁴ с⁻¹ [9, 10], для которых на рис.2 сплошной линией показаны экспериментально зарегистрированные графики температуры, штриховой – вычисленные по формуле (2) [10]. Авторы [10] объясняют факт полного преобразования работы пластической деформации в тепловую энергию отсутствием деформационного упрочнения чистого поликристаллического тантала при динамическом нагружении.

На рис. 3,*а* и рис. 3,*б* приведены результаты испытаний соответственно магниевого АМ50 и титанового Ti6Al4V сплавов при скорости деформации 3·10³ с⁻¹ [11].

Сплошной толстой линией показаны зависимости «истинное напряжение – истинная деформация», тонкими линиями – измеренная температура образцов, пунктирными – температура, вычисленная по формуле (2) в предположении, что $\beta_{int} = 1$. На рис. 3 область, отмеченная цифрой *l*, соответствует однородной пластической деформации (до момента достижения максимума на диаграмме «истинное напряжение–истинная деформация»), ее правая граница соответствует появлению неоднородных деформаций, а правая граница области *2* – пересечению графиков измеренной и вычисленной по (2) температур. В области однородных пластических деформаций графики измеренной и вычисленной температур хорошо согласуются для магниевого сплава и значительно расходятся для титанового сплава. При этом для согласования экспериментальных и расчетных данных для титанового сплава необходимо принять $\beta_{int} = 0,52$.

В ряде исследований показана существенная зависимость функции β_{int} не только от материала, но также от величины и скорости деформации. В работе [12] для чистого железа показана существенная зависимость параметра β_{int} от деформации и скорости деформации (рис. 4,*a*): 0,35 $\leq \beta_{int} \leq 0,5$ при скорости деформации 3,8·10³ с⁻¹ (кривая *I*) и 0,55 $\leq \beta_{int} \leq 1,15$ при скорости деформации 8,4·10³ с⁻¹ (кривая *I*).

Рис. 4

Аномальное поведение параметра β_{int} ($\beta_{int} \ge 1$) при больших скоростях деформации объясняется динамической рекристаллизацией, которая является экзотермическим процессом. На рис. 4,6 приведены зависимости напряжения (кривая *1*) и температуры (кривая *2*) от деформации для скорости деформации 3,8·10³ с⁻¹.

Поведение параметра β_{diff} исследовано гораздо меньше [13–16]. В работах [15, 16] показан нелинейный характер изменения параметра β_{diff} как для алюминиевого сплава 2024-Т3, не чувствительного к скорости деформации: $0,3 \le \beta_{diff} \le 0,6$ (рис. 5), так и для чувствительного к скорости деформации титана: при скорости деформации 1 с⁻¹ 0,6 $\le \beta_{diff} \le 0,72$, при 10⁵ с⁻¹ 0,75 $\le \beta_{diff} \le 0,8$ (рис. 6). Для алюминиевого сплава 2024-Т3 (рис. 7) [16] и титана (рис. 8) [14] при величине пластической деформации 0,4 функция β_{diff} достигает значения, близкого к 1, и сохраняет это значение при дальнейшем увеличении пластической деформации.

В НИИ механики Нижегородского госуниверситета им. Н.И. Лобачевского были проведены испытания образцов из пористого алюминия АК-7, свинца и алюминиевого сплава Д16Т в условиях сжатия при статическом и динамическом нагружениях. Эксперименты со скоростью деформации $\dot{e} \sim 10^{-3}$ с⁻¹ выполнялись на статических испытательных машинах ZWICK-Z030 и МИУ-500. Диаметр и высота образцов $D = H = 8 \cdot 10^{-3}$ м. Эксперименты в динамическом диапазоне деформирования (скорость деформации – до 10³ с⁻¹) проводились на пневмодинамической копровой установке вертикального типа. Установка имеет пневматическое разгонное устрой-

ство падающего груза и электронный измеритель скорости бойка при ударе. Испытуемый образец устанавливался на торце измерительного стержня с наклеенными тензодатчиками. Температура в процессе деформирования измерялась контактным способом – термопарой, вставленной в образец, и бесконтактным способом – пирометром инфракрасным АКИП-9306.

Результаты испытаний образцов из сплава Д16Т. Масса ударника составляла 3, 5 и 10 кг. Скорость удара варьировалась от 11 до 33 м/с. Диаметр и высота образцов $D = H = 2 \cdot 10^{-2}$ м. Параметры и результаты экспериментов приведены в таблице 1, где l_0, d_0, l и d – соответственно высота и диаметр образцов до и после испытаний, M – масса ударника, V_0 – начальная скорость ударника, ΔT – изменение температуры образца, e_p – остаточная деформация образца. Звездочкой отмечены образцы, разрушившиеся после испытания. Изменение температуры составило 14–90 °С, условной осевой деформации – 8–43%. При копровых испытаниях процесс деформирования образцов рассматривался до момента остановки ударника, при этом диапазон скоростей деформаций составлял от 1,5·10³ с⁻¹ до нуля. Зависимости осевого напряжения и скорости осевой деформации от величины осевой деформации определялись по методикам [17, 18]. Анализ полученных экспериментальных данных показал, что в реализованном диапазоне скоростей деформаций алюминиевый сплав Д16Т не чувствителен к скорости деформации.

Таблица	1	
---------	---	--

№ образца	<i>l</i> ₀ , мм	<i>d</i> ₀ , мм	М, кг	<i>V</i> ₀ , м/с	<i>l</i> , мм	<i>d</i> , мм	ΔT , °C	$e_p, \%$
1	2	3	4	5	6	7	8	9
29	20,15	19,8	10	16	14,8	22	45,0	26,5
						23,5		
						22,8		
30	20,05	19,8	10	15,8	15,3	21,8	47,5	23,4
						23,2		
						22,6		
31	20,1	19,8	10	14,3	16,2	21,25	31,5	19,4
						22,5		
						21,7		
32	20,05	19,8	10	11,1	17,7	20,6	22,0	11,7
						21,6		
				10.5		20,8		
33	20,1	19,8	10	18,5	12,3	-	69	38,8
						23,6*		
24	20	10.0	10	165	1.4.1	-	50	20.5
34	20	19,8	10	10,5	14,1	-	50	29,5
						23,7*		
25	20	10.9	2	22.0	16.4	-	27	10
33	20	19,0	5	23,9	10,4	21,9	57	10
						22,5		
27	10.0	10.8	2	27.7	14.0	21,05	17	25.1
57	19,9	19,0	5	21,1	14,9	22,4	4/	23,1
						22,2		
28	10.0	10.8	2	28.2	14.8	22,15	40	25.6
30	17,9	19,0	5	20,2	14,0	22,0	49	23,0
						22,6		

1	2	3	4	5	6	7	8	9
41	20,05	19,8	5	22,3	12,5	-	60	37,7
						22,0*		
42	20,05	19,8	5	19,3	16,9	21,1	32	15,7
						21,75		
15	20,05	19,8	3	32,9	11,55	-	90	42,9
					-	-		
						24*		
44	20,1	19,8	5	13,7	18,4	20,4	14	8,4

Результаты серии экспериментов приведены на рис. 9, 10. По оси абсцисс отложены остаточные деформации образцов e_p , по оси ординат на рис. 9 – приращение температуры ΔT , на рис. 10 – значения параметра β_{int} . Поскольку материал не чувствителен к скорости деформации, для вычисления параметра β_{int} величина работы пластической деформации W_p определялась интегрированием статической диаграммы деформирования до реализованной в экспериментах остаточной деформации e_p . Определенные таким образом значения параметра β_{int} варьируются от 0,65 до 0,9. Если аппроксимировать экспериментальную зависимость $\Delta T \sim e_p$ линейным законом (сплошная линия на рис. 9), то $\beta_{int} \approx 0,87$.

Результаты испытаний образцов из свинца. Масса ударника составляла 5 и 10 кг. Скорость удара варьировалась от 11 до 17 м/с. Диаметр и высота образцов $D=H=2\cdot10^{-2}$ м. Параметры и результаты экспериментов приведены в таблице 2.

							-	Таблица 2
№ образца	<i>l</i> ₀ , мм	<i>d</i> ₀ , мм	М, кг	V ₀ , м/с	<i>l</i> , мм	<i>d</i> , мм	ΔT , °C	$e_p, \%$
1	2	3	4	5	6	7	8	9
2,2	22,8	39,9	10	12,2	12,2	53	7	46,5
						54		
						55		
2,3	23,1	40	10	11,7	13	53,4	8	43,7
						54,6		
						54		

Продолжение тадлицы								
1	2	3	4	5	6	7	8	9
1	22,8	39,7	10	11,6	13,05	51,75	6	42,7
						53,6		
						51,85		
2	22,7	39,7	5	17,6	11,3	52	14	50,5
						55		
						58		
3	22,85	39,7	5	16,5	12,5	53,4	7	45,3
						54,6		
						54,8		

Величина скоростей деформации изменялась от 7·10² с⁻¹ до нуля. Диапазон изменения температуры образцов из свинца в процессе деформирования составил 6–14 °C, условной осевой деформации – 43–50%.

Результаты серии экспериментов приведены на рис. 11, 12. Величина параметра β_{int} варьируется от 0,4 до 0,85.

Результаты испытаний образцов из пористого материала на основе алюминиевого сплава АК-7. Для пористого алюминия АК-7 получены статические диаграммы деформирования образцов при сжатии при нормальных температурах. Дополнительно исследовано влияние температуры на диаграмму сжатия в диапазоне T = 20-300 °C. Диаграммы деформирования приведены на рис. 13. Цифрами 1–5 отмечены данные при температурах 20, 100, 200, 250 и 300 °C соответственно.

При динамических испытаниях пористого алюминия АК-7 на вертикальной копровой установке масса ударника составляла 3 кг. Скорость удара варьировалась от 18 до 23,5 м/с. Диаметр и высота образцов: $D = 6 \cdot 10^{-2}$ м, $H = 2 \cdot 10^{-2}$ м. Параметры и результаты экспериментов приведены в таблице 3. Образец 4 был испытан повторно, в таблице 3 он фигурирует под номером 4-2. В испытаниях образцов 4 и 5 параметр β_{int} равен 0,5 и 0,7.

							د	аолица з
№ образца	<i>l</i> ₀ , мм	<i>d</i> ₀ , мм	М, кг	V ₀ , м/с	<i>l</i> , мм	<i>d</i> , мм	ΔT , °C	$e_p, \%$
4	20,1	60,0	3	17,9	16,0	61,2	3	20,4
						62,65		
						61,8		
5	20,1	60,05	3	22,7	14,3	61,75	7	28,8
						63,6		
						63,25		
4-2	16	61,9	3	23,5	12,1	64,2	4	24,4
						66,7		
						63,6		

Исследуемый пористый материал не чувствителен к скорости деформации в реализованном диапазоне. Это можно объяснить слабой зависимостью от скорости деформации основы материала – алюминиевого сплава АК-7. Кроме того, на начальном этапе нагружения (до закрытия пор) деформирование происходит, в основном, за счет смятия перегородок, то есть весьма неравномерно. Соответственно и температурное поле распределено неравномерно, а измерения производятся термопарой, регистрирующей усредненное значение температуры.

Вместе с тем анализ литературы и результаты экспериментов, проведенных в НИИ механики Нижегородского госуниверситета, свидетельствуют, что в общем случае функции β_{int} и β_{diff} , характеризующие часть работы пластической деформации, переходящую в тепловую энергию, зависят от структуры материала, величины и скорости деформации. Поэтому для материалов с низкой температурой плавления построение динамических диаграмм деформирования при больших деформациях необходимо осуществлять с учетом изменения температуры, поскольку возможен значительный нагрев образцов.

Авторы статьи выражают благодарность сотрудникам НИИ механики Нижегородского госуниверситета Д.А. Казакову, Б.В. Коробову, А.Н. Горохову за помощь в проведении экспериментов.

Литература

1. *Rittel, D.* On the conversion of plastic work to heat during high strain rate deformation of glassy polymers / D. Rittel // Mechanics of Materials. – 1999. – No 31. – P. 131–139.

2. *Boley, B.A.* Theory of thermal stresses / B.A. Boley, J.H. Weiner. – NY: J. Wiley and Sons, 1960.

3. *Taylor, G.I.* The latent energy remaining in a metal after cold working / G.I. Taylor, H. Quinney // Proc. Roy. Soc. – 1934. – Ser. A, No 143. – P. 307–326.

4. *Farren, W.S.* The heat developed during plastic extension of metals / W.S. Farren, G.I. Taylor // Proc. R. Soc. – 1925. – Ser. A, No 107. – P. 422–451.

5. *Rittel, D.* Large strain constitutive behavior of OFHC copper over a wide range of strain rates using the shear compression specimen / D. Rittel, G. Ravichandran, S. Lee // Mechanics of Materials. – 2002. – No 34. – P. 627–642.

6. *Пудовкин, В.Д.* Исследование сопротивления деформированию металлов при высокоскоростном нагружении / В.Д. Пудовкин, А.М. Брагов // Прикладные проблемы прочности и пластичности. Механика деформируемых систем. – 1979. – С. 133–142.

7. *Пудовкин, В.Д.* Методика исследования тепловых эффектов высокоскоростной деформации / В.Д. Пудовкин, С.И. Ишуткин, Л.Д. Соколов // Теплофизика технологических процессов: Тез. докл. VI Всесоюз. конф. – Тольятти, 1976.

8. Баранников, В.А. Экспериментальное изучение термодинамики нагруженной меди / В.А. Баранников, Е.А. Николаева, С.Н. Касаткина // Физическая мезомеханика. – 2005. – №8 (2). – С. 107–112.

9. *Kapoor, R.* Determination of temperature rise during high strain rate deformation / R. Kapoor, S. Nemat-Nasser // Mechanics of Materials. – 1998. – No 27. – P. 1–12.

10. Thermomechanical characterization of pure polycrystalline tantalum / D. Rittel [et al.] // Materials Science and Engineering. – 2007. – Ser. A, No 477. – P. 65–70.

11. *Rittel, D.* Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys / D. Rittel, Z.G. Wang // Mechanics of Materials. – 2008. – No 40. – P. 629–635.

12. *Rittel, D.* The mechanical response of pure iron at high strain rates under dominant shear / D. Rittel, G. Ravichandran, A. Venkert // Materials Science and Engineering. – 2006. – Ser. A, No 432. – P. 191–201.

13. *Mason, J.J.* On the strain and strain rate dependence of the fraction of plastic work converted into heat: an experimental study using high speed infrared detectors and the Kolsky bar / J.J. Mason, A.J. Rosakis, G. Ravichandran // Mechanics of Materials. – 1994. – No 17. – P. 135–145.

14. Partition of plastic work into heat and stored energy in metals / J. Hodowany [et al.] // Experimental Mechanics. – 2000. – No 40 (2). – P. 113–123.

15. A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals / P. Rosakis [et al.] // Journal of the Mechanics and Physics of Solids. – 2000. – No 48. – P. 581–607.

16. On the conversion of plastic work into heat during high-strain-rate deformation / G. Ravichandran [et al.] // Shock Compression of Condensed Matter. – 2001. – P. 557–562.

17. *Баженов, В.Г.* Развитие и верификация метода прямого удара для идентификации вязкопластических характеристик материалов в экспериментах на газодинамической копровой установке / В.Г. Баженов, М.С. Баранова, Е.В. Павленкова // Проблемы прочности и пластичности: Межвуз. сб. / Нижегород. ун-т. – 2009. – Вып. 71. – С. 184–192.

18. Баженов, В.Г. Идентификация ударно-волнового процесса в мерном стержне газодинамической копровой установки по показаниям двух датчиков деформаций / В.Г. Баженов, М.С. Баранова, Е.В. Павленкова // Математическое моделирование и краевые задачи: Труды восьмой Всерос. науч. конф. с междунар. участием. Ч. 1: Математические модели механики, прочности и надежности элементов конструкций. – Самара: СамГТУ, 2011. – С. 20–23.

[05.12.2011]

THE ANALYSIS OF THE ROLE OF THERMOMECHANICAL EFFECTS IN METALS AND ALLOYS UNDER LARGE DEFORMATIONS

V.G. Bazhenov, E.V. Pavlenkova, D.V. Zhegalov, M.S. Baranova

The analysis of results of experimental and theoretical investigations concerning the role of thermomechanical effects in specimens from metals and alloys under elastic-plastic adiabatic static and dynamic deformation in the wide ranges of strain rate and value is provided.

Keywords: plastic deformation work, thermal energy, large deformations, strain rate.