УДК 539.3

ОБ УСТАНОВИВШИХСЯ КОЛЕБАНИЯХ ТОЛСТОЙ ПРЯМОУГОЛЬНОЙ ПЛАСТИНКИ ИЗ ПОЛИМЕРНОГО МАТЕРИАЛА ПРИ СВОБОДНОМ ОПИРАНИИ ДВУХ ПРОТИВОПОЛОЖНЫХ СТОРОН

П.Ф. Недорезов

Саратовский госуниверситет им. Н.Г. Чернышевского

Рассматриваются установившиеся колебания прямоугольной пластинки, у которой два противоположных края свободно оперты при произвольных условиях на остальной части контура. Материал пластинки считается вязкоупругим. Разрешающая система уравнений записана без каких-либо предварительных предположений о характере изменения определяющих величин по толщине пластинки. Трехмерная краевая задача сводится к одномерной с помощью методов разделения переменных и сплайн-коллокации. Для численного решения одномерной задачи применяется устойчивый метод дискретной ортогонализации. Приведены примеры числовых расчетов.

Ключевые слова: пластинка, изгиб, численное решение, сплайны, дискретная ортогонализация.

Введение

При решении задач статики и динамики пластинок и оболочек наряду с классической теорией, базирующейся на гипотезах Кирхгофа (для пластинок) или Кирхгофа—Лява (для оболочек), применяются различные «уточненные» теории. С нашей точки зрения, использование термина «уточненная теория» не вполне корректно, так как говорить о точности той или иной приближенной теории можно только в случае, когда известно решение, полученное на основе строгих уравнений без какихлибо предварительных предположений о характере распределения напряжений и деформаций по толщине пластинки или оболочки. Методики получения таких «точных» решений позволят более объективно оценивать и сравнивать точность различных приближенных теорий.

Подобные методики решения с использованием хорошо апробированного устойчивого численного метода дискретной ортогонализации применительно к задачам о колебаниях некоторых объектов из вязкоупругого материала были предложены в работах [1, 2] (пластинка-полоса), [3] (круговая цилиндрическая оболочка) и [4] (свободно опертая по краям пластинка конечных размеров). Результаты расчетов по этим методикам позволили обнаружить некоторые новые эффекты, которые не могут быть описаны в рамках любых приближенных теорий, предполагающих неизменность прогиба по толщине.

В настоящей работе приводится методика решения задачи о колебаниях толстой

вязкоупругой пластинки при свободном опирании двух противоположных краев и произвольных граничных условиях на остальной части боковой поверхности.

1. Постановка задачи и основные уравнения и соотношения

В декартовой системе координат x, y, z рассматриваются установившиеся колебания толстой вязкоупругой пластинки с размерами в плане a, b и толщиной h. Колебания вызваны распределенной по поверхности x = -h/2 нагрузкой интенсивности

$$q(x, y, t) = q_0(x, y) \cos \omega t, \tag{1}$$

В качестве исходных принимаются известные уравнения движения сплошной среды, уравнения, выражающие компоненты тензора малых деформаций через производные от проекций вектора смещений, и соотношения между напряжениями и деформациями:

$$\sigma_{x} = \frac{1}{(1+\nu)(1-2\nu)} \int_{\tau=-\infty}^{t} K(t-\tau) ((1-\nu)\varepsilon_{x} + \nu(\varepsilon_{y} + \varepsilon_{z})) d\tau,$$

$$\tau_{xy} = \frac{1}{2(1+\nu)} \int_{\tau=-\infty}^{t} K(t-\tau) \gamma_{xy} d\tau \quad (x \Leftrightarrow y \Leftrightarrow z).$$
(2)

Напряжения и перемещения, соответствующие нагрузке (1), представляются в виде

$$\{u, v, w, \sigma_x, \sigma_y, \sigma_z, \tau_{xy}, \tau_{xz}, \tau_{yz}\} =$$

= $\sum_{k=1}^{2} \{u^{(k)}, v^{(k)}, w^{(k)}, \sigma_x^{(k)}, \sigma_y^{(k)}, \sigma_z^{(k)}, \tau_{xy}^{(k)}, \tau_{xz}^{(k)}, \tau_{yz}^{(k)}\} \sin\left(\frac{\pi}{2}k - \omega t\right),$ (3)

где все величины, стоящие в правой части, являются функциями координат x, y, z.

Из (2) с учетом представления (3) получаются следующие выражения составляющих $\sigma_x^{(k)}, \sigma_y^{(k)}, ..., \tau_{xy}^{(k)}$ через производные составляющих вектора смещения $u^{(k)}, v^{(k)}, w^{(k)}$:

$$\sigma_x^{(k)} = A^{-1} \sum_{k=1}^2 (-1)^{j+1} E_{j+k+1} \left[(1-\nu) \frac{\partial u^{(j)}}{\partial x} + \nu \left(\frac{\partial v^{(j)}}{\partial y} + \frac{\partial w^{(j)}}{\partial z} \right) \right],$$

$$\tau_{yz}^{(k)} = \frac{1}{2(1+\nu)} \sum_{k=1}^2 (-1)^{j+1} E_{j+k+1} \left(\frac{\partial v^{(j)}}{\partial z} + \frac{\partial w^{(j)}}{\partial y} \right)$$

$$(x \Leftrightarrow v \Leftrightarrow z; \quad u^{(j)} \Leftrightarrow v^{(j)} \Leftrightarrow w^{(j)}; \quad k = 1, 2),$$
(4)

В формулах (4) обозначено $A = (1 + \nu)(1 + 2\nu)$; $E_k(k = 1, 2)$ – компоненты комплексного модуля материала,

$$E_1 + iE_2 = \int_0^\infty K(s) \exp(i\omega s) ds, \ E_3 = -E_1.$$

Из уравнений движения после отделения с учетом (3) временной переменной и замены составляющих напряжений по формулам (4) получается система дифференциальных уравнений относительно функций $u^{(k)}(x, y, z)$, $v^{(k)}(x, y, z)$, $w^{(k)}(x, y, z)$. Из этих уравнений после ряда преобразований следует система уравнений для безразмерных составляющих вектора смещения $u_k = h^{-1}u^{(k)}$, $v_k = h^{-1}v^{(k)}$, $w_k = h^{-1}w^{(k)}$ (k = 1, 2), которая в безразмерных переменных $\xi = a^{-1}x$, $\eta = b^{-1}y$, $\zeta = h^{-1}z$

может быть представлена в виде

$$\alpha h_0^2 \frac{\partial^2 u_k}{\partial \xi^2} + h_0^2 c^2 \frac{\partial^2 u_k}{\partial \eta^2} + \frac{\partial^2 u_k}{\partial \varsigma^2} + \beta h_0 \left(h_0 c \frac{\partial^2 v_k}{\partial \xi \partial \eta} + \frac{\partial^2 w_k}{\partial \xi \partial \varsigma} \right) - (-1)^k 2(1+\nu)\rho h^2 \omega^2 \sum_{j=1}^2 \delta_{j+k-1} u_j = 0$$
(5)

$$(\xi \Leftrightarrow c^{-1}\eta \Leftrightarrow h_0\varsigma; \quad u_k \Leftrightarrow v_k \Leftrightarrow w_k; \quad k=1,2).$$

(5) обозначено $h_0 = h/a, c = a/b, \delta_n = E_n/(E_1^2 + E_2^2)$ $(n = 1,2)$

В уравнениях (5) обозначено $h_0 = h/a$, c = a/b, $\delta_n = E_n/(E_1^2 + E_2^2)$ (n = 1, 2), $\delta_3 = -\delta_1$.

Решение системы (5) должно быть подчинено граничным условиям на краях $\xi = 0, \xi = 1, \eta = 0$ и $\eta = 1$ и на поверхностях $\varsigma = \mp 0.5$:

при
$$\varsigma = -0.5$$
 $\sigma_z^{(1)} = -q_0(\xi, \eta); \ \sigma_z^{(2)} = \tau_{xz}^{(k)} = \tau_{yz}^{(k)} = 0$ $(k = 1, 2);$
при $\varsigma = 0.5$ $\sigma_z^k = \tau_{xz}^{(k)} = \tau_{yz}^{(k)} = 0$ $(k = 1, 2).$ (6)

2. Понижение размерности краевой задачи

Методика понижения размерности краевой задачи для уравнений (5) несколько изменяется в зависимости от вида функции q(x, y) в (1) и граничных условий на краях $\xi = 0$, $\xi = 1$, $\eta = 0$ и $\eta = 1$.

Когда $q(x, y) = p_0 \sin m\pi \xi \cdot \sin n\eta$ ($p_0 = \text{const}$), а края пластинки подкреплены шарнирами [4], переход от трехмерной краевой задачи к одномерной выполняется методом разделения переменных, если функции $u^{(k)}$, $v^{(k)}$, $w^{(k)}$ искать в виде

$$u_k(\xi,\eta,\zeta) = U_k(\zeta)\cos m\pi\xi \cdot \sin n\pi\eta, \quad v_k(\xi,\eta,\zeta) = V_k(\zeta)\sin m\pi\xi \cdot \cos n\pi\eta,$$
$$w_k(\xi,\eta,\zeta) = W_k(\zeta)\sin m\pi\xi \cdot \sin n\pi\eta, \quad k = 1, 2.$$

Тогда условия шарнирного опирания краев удовлетворяются автоматически.

Если $q(x,y) = p_0(\eta) \sin m\pi \xi$, а шарнирно закреплены только края $\xi = 0, \xi = 1$ при произвольном закреплении краев $\eta = 0$ и $\eta = 1$ (этот случай рассматривается в дальнейшем), то составляющие смещений, тождественно удовлетворяющие условиям на краях $\xi = 0, \xi = 1$, ищутся в виде

$$u_{k}(\xi,\eta,\varsigma) = U_{k}^{*}(\eta,\varsigma)\cos m\pi\xi, \quad v_{k}(\xi,\eta,\varsigma) = V_{k}^{*}(\eta,\varsigma)\sin m\pi\xi,$$
$$w_{k}(\xi,\eta,\varsigma) = W_{k}^{*}(\eta,\varsigma)\sin m\pi\xi.$$
(7)

Тогда из (5) и (7) для функций $U_k^*(\eta,\varsigma)$, $V_k^*(\eta,\varsigma)$ и $W_k^*(\eta,\varsigma)$ получается система двумерных уравнений

$$\frac{\partial^2 U_k^*}{\partial \varsigma^2} + h_0^2 c^2 \frac{\partial^2 U_k^*}{\partial \eta^2} - \alpha h_0^2 m^2 \pi^2 U_k^* + \beta h_0 m \pi \left(h_0 c \frac{\partial V_k^*}{\partial \eta} + \frac{\partial W_k^*}{\partial \varsigma} \right) - (-1)^k 2(1+\nu)\rho h^2 \omega^2 \sum_{j=1}^2 \delta_{j+k-1} U_j^* = 0$$

$$(\xi \Leftrightarrow c^{-1}\eta \Leftrightarrow h_0\varsigma; \quad U_k^* \Leftrightarrow V_k^* \Leftrightarrow W_k^*; \quad k = 1, 2).$$
(8)

Дальнейшее понижение размерности системы (8) выполняется классическим методом сплайн-коллокации [5]. Согласно этому методу, функции
$$U_k^*(\eta, \varsigma), V_k^*(\eta, \varsigma)$$

и $W_k^*(\eta, \varsigma)$ представляются в виде:

$$U_{1}^{*}(\eta,\varsigma) = \sum_{j=0}^{N} \varphi_{j}(\eta) U_{j}(\varsigma), \quad U_{2}^{*}(\eta,\varsigma) = \sum_{j=0}^{N} \varphi_{j}(\eta) U_{j+N+1}(\varsigma),$$

$$V_{1}^{*}(\eta,\varsigma) = \sum_{j=0}^{N} \psi_{j}(\eta) V_{j}(\varsigma), \quad V_{2}^{*}(\eta,\varsigma) = \sum_{j=0}^{N} \psi_{j}(\eta) V_{j+N+1}(\varsigma), \quad (9)$$

$$W_{1}^{*}(\eta,\varsigma) = \sum_{j=0}^{N} \varphi_{j}(\eta) W_{j}(\varsigma), \quad W_{2}^{*}(\eta,\varsigma) = \sum_{j=0}^{N} \varphi_{j}(\eta) W_{j+N+1}(\varsigma),$$

где

$$\varphi_j(\eta) = \psi_j(\eta) = B_{3,j}(\eta) \quad (j = \overline{2, N-2}),$$

 $\varphi_0(\eta) = \psi_0(\eta) = -4B_{3,-1}(\eta) + B_{3,0}(\eta), \quad \varphi_1(\eta) = \psi_1(\eta) = -B_{3,-1}(\eta) + B_{3,1}(\eta), \quad (10)$ $\varphi_{N-1}(\eta) = \psi_{N-1}(\eta) = B_{3,N-1}(\eta) - B_{3,N+1}(\eta), \quad \varphi_N(\eta) = \psi_N(\eta) = B_{3,N}(\eta) - 4B_{3,N+1}(\eta),$

если края $\eta = 0$, $\eta = 1$ закреплены жестко. При шарнирном подкреплении края $\eta = 0$ и жесткой заделке края $\eta = 1$

$$\Psi_0(\eta) = B_{3,0}(\eta), \quad \Psi_1(\eta) = B_{3,-1}(\eta) + B_{3,1}(\eta),$$
(11)

а все функции $\varphi_j(\eta)$ и функции $\psi_k(\eta) (k = \overline{2, N})$ по-прежнему определяются по формулам (10). При таком выборе функций $\varphi_j(\eta)$ и $\psi_k(\eta)$ граничные условия на краях $\eta = 0$ и $\eta = 1$ тождественно выполняются при любых $U_s(\eta, \varsigma)$ и $V_s(\eta, \varsigma)$ ($s = \overline{0, 2N+1}$).

В формулах (10), (11) $B_{3,i}(\eta)$ – нормализованные кубические *B*-сплайны [6], определенные на равномерной сетке $\Delta = \{\eta_{-3} < \eta_{-2} < ... < \eta_{N+3}\}, \eta_i = i/N$ (*i* = $=\overline{-3, N+3}$).

Система обыкновенных дифференциальных уравнений для функций $U_s(\varsigma)$, $V_s(\varsigma)$ и $W_s(\varsigma)$ ($s = \overline{0, 2N + 1}$) получается из требования, чтобы результат подстановки выражений (9) в уравнения (8) выполнялся в точках коллокации $\eta = \eta_i^*$ ($i = \overline{0, N}$). Эта система разрешается относительно старших производных функций $U_s(\varsigma)$, $V_s(\varsigma)$ и $W_s(\varsigma)$, что всегда возможно при соответствующем выборе точек коллокации, и затем преобразуется в систему уравнений первого порядка, которая в векторной форме имеет вид

$$\frac{d\overline{Y}(\varsigma)}{d\varsigma} = B\overline{Y}(\varsigma). \tag{12}$$

Здесь $\overline{Y}(\varsigma)$ – вектор неизвестных, компонентами которого являются искомые функции $U_s(\varsigma), V_s(\varsigma), W_s(\varsigma)$ и их первые производные, матрица *B* с размерностью $(12N+12)\times(12N+12)$ имеет известные компоненты.

Граничные условия для функции Y() получаются из условий (6), в которых составляющие напряжений выражены с учетом (7) и (9) через компоненты вектора $\overline{Y}(\varsigma)$. Выполнение условий (6) требуется в концевых точках отрезков $\eta = \eta_i^*$ $(i = \overline{0, N})$. Эти условия записываются в виде

$$H_1\overline{Y}(-0,5) = \overline{g}_1, \quad H_2\overline{Y}(0,5) = \overline{g}_2 \tag{13}$$

с известными матрицами H_1, H_2 и векторами $\overline{g}_1, \overline{g}_2$.

147

Краевая задача (12), (13) решается численно устойчивым методом дискретной ортогонализации С.К. Годунова.

3. Пример числовых расчетов

Числовые расчеты были выполнены при m = 1 для квадратных пластинок (a = b = 1,0 м) с различной толщиной h_0 из вязкоупругого материала ЭД-6 МА с параметрами $\rho = 1250$ кг/м³, $E = 2,7 \cdot 10^9$ H/м², $E_2/E_1 = 0,015$, $\nu = 0,4$ при значении $p_0 = 1,57$ H/м², которому соответствует амплитуда равнодействующей нагрузки при $\varsigma = -0,5$, равная 1,0 Н. Края $\eta = 0$ и $\eta = 1$ предполагались жестко защемленными. В качестве критических частот принимались значения $\omega = \omega_k$, при которых достигаются экстремумы прогибов точек срединной плоскости пластинки вдоль прямой $\xi = 0,5$, где прогибы получаются максимальными.

Так как картина распределения смещений симметрична относительно сечений $\xi = 0,5$ и $\eta = 0,5$, то в дальнейшем все результаты приводятся для значений $0 \le \xi$, $\eta \le 0,5$.

В табл.1 указаны критические значения ω_k (k = 1, 2, 3) и соответствующие им значения локальных экстремумов амплитуды прогиба $\widetilde{W} = W(\xi = 0,5;\eta;\varsigma)$; в скобках даны значения η , при которых эти экстремумы достигаются.

Таблица	1
	_

h_0	k	ω_k, c^{-1}	\widetilde{W}
0,025	1	332	1,590.10 ⁻³ (0,50)
	2	1453	3,373.10 ⁻⁵ (0,21); 3,150.10 ⁻⁵ (0,50)
	3	3369	4,097.10 ⁻⁶ (0,13); 3,816.10 ⁻⁶ (0,32); 3,832.10 ⁻⁶ (0,50)
0,075	1	957	$2,114 \cdot 10^{-5}$
	2	3820	5,506·10 ⁻⁷ (0,20); 5,114·10 ⁻⁷ (0,5)
	3	7956	8,382.10-8 (0,12); 7,641.10-8 (0,31); 7,713.10-8 (0,50)
0,100	1	1232	7,150.10 ⁻⁶ (0,50)
	2	4637	2,103.10-7 (0,19); 1,942.10-7 (0,50)
	3	9217	3,478.10-8 (0,12); 3,169.10-8 (0,31); 3,212.10-8 (0,50)
0,200	1	2047	6,303.10-7 (0,50)
	2	6382	2,633.10 ⁻⁸ (0,175); 2,446.10 ⁻⁸ (0,50)
	3	11483	4,520.10 ⁻⁹ (0,10); 4,432.10 ⁻⁹ (0,30); 4,397.10 ⁻⁹ (0,50)
0,250	1	2315	3,105.10 ⁻⁷ (0,50)
	2	6814	1,426.10-8 (0,175); 1,331.10-8 (0,50)
	3	11934	1,301.10 ⁻⁹ (0,10); 1,378.10 ⁻⁹ (0,30); 1,286.10 ⁻⁹ (0,50)

Соответствующие значения критических частот ω_k^* и локальных экстремумов \widetilde{W}_* , вычисленные по классической теории [7], основанной на гипотезах Кирхгофа, приводятся в табл. 2.

Как следует из приведенных в таблицах данных, классическая теория качественно правильно отражает форму изогнутой срединной поверхности колеблющейся пластинки, однако дает завышенные значения для критических частот и заниженные значения локальных экстремумов амплитуды прогиба. Погрешность результатов по классической теории, составляющая доли процента для тонких пластинок ($h_0 \le 0.025$) при первой критической частоте, быстро нарастает с увеличением номера критической частоты и толщины пластинки и достигает $\approx 300\%$ при $h_0 = 0.25$ и $\omega = \omega_3$.

h_0	k	ω_k^*, c^{-1}	\widetilde{W}_*
0,025	1	335	1,569.10-3 (0,50)
	2	1494	3,211.10 ⁻⁵ (0,21); 3,029.10 ⁻⁵ (0,50)
	3	3556	3,653.10 ⁻⁶ (0,13); 3,431.10 ⁻⁶ (0,32); 3,433.10 ⁻⁶ (0,50)
0,075	1	1005	1,937.10 ⁻⁵ (0,50)
	2	4483	3,965.10 ⁻⁷ (0,21); 3,733.10 ⁻⁷ (0,50)
	3	10672	4,514.10 ⁻⁸ (0,13); 4,223.10 ⁻⁸ (0,32); 4,245.10 ⁻⁸ (0,50)
0,100	1	1340	6,130.10 ⁻⁶ (0,50)
	2	5977	1,246.10 ⁻⁷ (0,21); 1,182.10 ⁻⁷ (0,50)
	3	14229	1,428.10 ⁻⁸ (0,13); 1,337.10 ⁻⁸ (0,32); 1,343.10 ⁻⁸ (0,50)
0,200	1	2680	3,331.10 ⁻⁷ (0,50)
	2	11954	7,841.10 ⁻⁹ (0,21); 7,386.10 ⁻⁹ (0,50)
	3	28458	8,928.10 ⁻¹⁰ (0,13); 8,353.10 ⁻¹⁰ (0,32); 8,394.10 ⁻¹⁰ (0,50)
0,250	1	3350	1,569.10 ⁻⁷ (0,50)
	2	14936	3,207.10 ⁻⁹ (0,21); 3,031.10 ⁻⁹ (0,50)
	3	35574	$3,657\cdot10^{-10}$ (0,13); $3,420\cdot10^{-10}$ (0,32); $3,438\cdot10^{-10}$ (0,50)

Числовые расчеты показывают, что характер колебаний пластинки существенно зависит от ее толщины и частоты внешнего воздействия. В тонких пластинках $h_0 \le 0,075$ при $\omega \le \omega_3$ колебания остаются чисто изгибными с постоянными или мало меняющимися по толщине составляющими прогиба при линейном изменении по ς составляющих тангенциальных смещений. Однако уже при $h_0 = 0,05$ для $\omega \ge 1,5\omega_1$ в отдельных сечениях наряду с чисто изгибными появляются планарные колебания в направлении ξ , сначала в моменты времени $t = \tau_1$ (соз $\omega \tau_1 = 1$), а затем и в моменты $t = \tau_2$ (sin $\omega \tau_2 = 1$). Наложение двух форм колебаний в такой пластинке приводит к смещению нулевых точек для U_1^* и U_2^* со срединной плоскости в сторону положительных или отрицательных значений ς . Иллюстрацией этому может служить рис. 1, на котором изображены графики функции $\widetilde{U}(\varsigma) = 10^{11} \cdot u_2(\xi = 0,0;\eta;\varsigma)$ при $\omega = 1600$ с⁻¹ для значений $\eta = 0,3$ (кривая I), $\eta = 0,4$ (кривая 2) и $\eta = 0,5$ (кривая 3).

Одновременно становится заметным изменение составляющих прогиба по толщине пластинки, причем в одном и том же сечении при разных значениях ω закон изменения w_k по толщине может быть качественно различным.

Дальнейшее увеличение толщины h_0 еще более усложняет колебательный процесс. Планарные колебания в отдельных сечениях становятся преобладающими, что приводит к тому, что знак тангенциальных смещений по толщине не меняется. Это наблюдается, например, в пластинке с толщиной $h_0 = 0,100$ в полосе частот 2980 с⁻¹ $\leq \omega \leq 3020$ с⁻¹ для составляющей U_1^* в окрестности сечения $\eta = 0,1$, а для U_2^* u_2 – при $\eta = 0,4$ и $\eta = 0,5$. При этих же значениях ω в окрестности сечения $\eta = 0,2$ не меняет знак составляющая V_2^* , то есть на колебания в направлении ξ накладываются колебания в направлении η .

С ростом параметра h_0 полоса частот, при которых составляющие тангенциальных смещений сохраняют постоянный знак, расширяется, а зона, где происходят планарные колебания, распространяется на все значения η .

Анализ результатов вычисления составляющих прогиба *w* показывает, что в пластинках средней и большой толщины h_0 в отдельных сечениях $\eta = \text{const}$ возможны эффекты «подтягивания» (точки лицевых поверхностей $\varsigma = \mp 0,5$ смещаются навстречу друг другу) и «разбухания» (указанные точки перемещаются в противоположных направлениях). Эти эффекты были отмечены ранее при изучении вибрационного изгиба толстой пластинки – полосы [1, 2] и толстостенной цилиндрической оболочки [3].

В рассматриваемой задаче при $h_0 = 0,100$ в сечении $\eta = 0,4$ в моменты времени $t = \tau_2$ «разбухание» происходит при 3002 с⁻¹ $\leq \omega \leq 3031$ с⁻¹, причем в полосе частот 2988 с⁻¹ $\leq \omega \leq 3001$ с⁻¹ в том же сечении «разбуханию» предшествует двойная смена знака составляющей w_2 .

В более толстых пластинках проявление этих эффектов увеличивается. Так, при $h_0 = 0,200$ в моменты времени $t = \tau_1$, начиная с $\omega = 4025$ c⁻¹, в сечении $\eta = 0,1$ наблюдается «подтягивание», которое продолжается для 4583 c⁻¹ $\leq \omega$. При этом, как и в случае $h_0 = 0,100$, при частотах 40013 c⁻¹ $\leq \omega \leq 40024$ c⁻¹ в этом сечении происходит двойная смена знака составляющей w_1 . В диапазоне частот 4584 c⁻¹ $\leq \omega \leq 4730$ c⁻¹ w_1 достаточно сильно изменяется по толщине, но сохраняет в каждом сечении свой знак. При $\omega = 4731 \div 5428$ c⁻¹ в моменты времени $t = \tau_1$ имеет место «подтягивание» сечений $\eta = 0,1 \div 0,3$. При дальнейшем возрастании ω вплоть до значения $\omega = 5449$ c⁻¹ колебания в моменты $t = \tau_1$ происходят без изменения знака у w_1 , а в диапазоне 5450 c⁻¹ $\leq \omega \leq 5694$ c⁻¹ у составляющей w_1 наблюдается эффект слабого «разбухания» в сечении $\eta = 0,3$.

Графики, иллюстрирующие «разбухание» и «подтягивание», представлены на рис. 2 ($h_0 = 0,200$).

Рис. 2

Кривые на этом рисунке показывают изменение по толщине пластинки функции $\widetilde{W}_{*}(\varsigma) = 10^{10} w_{1}(0.5; 0.1; \varsigma)$ при $\omega = 4050 \text{ c}^{-1} - \text{кривая } I$ («подтягивание»), и функции $\widetilde{W}_{**}(\varsigma) = 10^{10} w_{1}(0.5; 0.3; \varsigma)$ при $\omega = 5900 \text{ c}^{-1} - \text{кривая } 2$ («разбухание»).

Наряду с «разбуханием» и «подтягиванием» в моменты времени $t = \tau_1$ при $\omega = 4053 \text{ c}^{-1}$ появляется «разбухание» в моменты времени $t = \tau_2$. Сначала этот эффект наблюдается вблизи сечения $\eta = 0,5$, постепенно распространяясь с ростом ω на другие сечения. При 5135 с⁻¹ $\leq \omega \leq 5622$ с⁻¹ «разбухание» происходит по всей ширине пластинки, но затем зона «разбухания» сужается и оно прекращается при $\omega \geq 5701 \text{ c}^{-1}$.

При приближении значения ω к критическому значению ω_2 колебания происходят без смены знака составляющих w_1 и w_2 . Уровень планарных колебаний несколько понижается, но закон изменения тангенциальных смещений по толщине становится еще более нелинейным. Например, при $h_0 = 0,200$ и $\omega = 6300$ с⁻¹ составляющая v_2 в сечении $\eta = 0,1$ три раза меняет знак.

Аналогичная картина колебательного процесса наблюдается и в диапазоне частот $\omega_1 < \omega < \omega_2$.

Литература

1. *Недорезов*, *П.Ф.* О колебаниях толстой вязкоупругой пластинки-полосы, свободно опертой по краям / П.Ф. Недорезов // Нелинейная динамика механических и биологических систем: Межвуз. научн. сб. / Саратов. гос. техн. ун-т. – 2004. – Вып. 2. – С. 20–27.

2. *Недорезов*, *П.Ф.* Вибрационный изгиб толстой вязкоупругой консольной пластинкиполосы распределенной поперечной нагрузкой / П.Ф. Недорезов // Проблемы прочности и пластичности: Межвуз. сб. / Нижегород. ун-т. – 2007. – Вып. 69. – С. 170–176.

3. *Недорезов*, *П.Ф.* Осесимметричный вибрационный изгиб толстостенной круговой цилиндрической оболочки из вязкоупругого материала при произвольном закреплении торцов / П.Ф. Недорезов // Проблемы прочности и пластичности: Межвуз. сб. / Нижегород. ун-т. - 2008. – Вып. 70. – С. 184–190.

4. *Недорезов*, *П.Ф.* Об установившихся колебаниях толстых вязкоупругих пластинок с шарнирно опертым контуром / П.Ф. Недорезов, А.В. Каменский // Проблемы прочности материалов и сооружений на транспорте: Труды VI Междунар. научно-техн. конф. – ПГУПС МПС России, 28–29 января. – 2004 г. – СПб: ПГУПС, 2004. – С. 292–301.

5. Григоренко, Я.М. Решение задач теории пластин и оболочек с применением сплайнфункций (Обзор) / Я.М. Григоренко, Н.Н. Крюков // Прикл. механика. – 1995. – Т. 31, №6. – С. 3–26.

6. Завьялов, Ю.С. Методы сплайн-функций / Ю.С. Завьялов., Ю.И. Квасов, И.Л. Мирошниченко. – М.: Наука, 1980. – 352 с.

7. *Недорезов*, *П.Ф.* Метод сплайн-коллокации в задаче о вибрационном изгибе вязкоупругой пластинки при сложном закреплении краев / П.Ф. Недорезов // Математическое моделирование и краевые задачи: Тр. 6-й межвуз. науч. конф., Самарск. гос. техн. ун-т. – Самара, 1996. – Ч.1. – С. 64–66.

[6.07.2009]

ON THE STEADY-STATE VIBRATIONS OF A THINK RECTANGULAR PLATE OF A POLYMERIC MATERIAL WITH TWO SIMPLY SUPPORTED OPPOSITE EDGES

P.F. Nedorezov

Steady-state vibrations of a rectangular plate with two simply supported opposite edges and random conditions along the rest of the contour are studied. The material of the plate is assumed visco-

elastic. The resolving equation set is written without any a priori assumptions about the nature of the parameter changes throughout the thickness of the plate. The 3-D problem is reduced to a 1-D one, using the variable separation method and spline-collocation. The problem is numerically analyzed using the stable method of discrete orthogonalization. Examples of numerical calculations are given.

Key words: plate, bending, numerical analysis, splines, discrete orthogonalization.